1,983 research outputs found

    Mach Stem Height and Growth Rate Predictions

    Get PDF
    A new, more accurate prediction of Mach stem height in steady flow is presented. In addition, starting with a regular reflection in the dual-solution domain, the growth rate of the Mach stem from the time it is first formed till it reaches its steady-state height is presented. Comparisons between theory, experiments, and computations are presented for the Mach stem height. The theory for the Mach stem growth rate in both two and three dimensions is compared to computational results. The Mach stem growth theory provides an explanation for why, once formed, a Mach stem is relatively persistent

    Non-contraceptive effects and uses of hormonal contraception

    Get PDF
    Most women feel confident taking the modern combined oestrogen-progestogen oral contraceptive pill (COCPs) but myths about these drugs still persist. Most non-contraceptive health benefits of COCPs are not widely appreciated, in spite of much evidence. Controversy still exists over the association between COCP use and breast cancer. Although slightly more breast cancers are detected in current COCP users they are less advanced in stage and less aggressive in behaviour. This article discusses the non-contraceptive benefits and uses of hormonal contraception. South African Family Practice Vol. 49 (7) 2007: pp. 32-3

    Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field

    Get PDF
    In this paper, we build a Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field. This consists in writing the solution of this equation as a sum of two oscillating functions with circonscribed oscillations. The first of these functions has a shape which is close to the shape of the Two-Scale limit of the solution and the second one is a correction built to offset this imposed shape. The aim of such a decomposition is to be the starting point for the construction of Two-Scale Asymptotic-Preserving Schemes.Comment: Mathematical Models and Methods in Applied Sciences 00, 00 (2012) 1 --

    3D Particle Tracking Velocimetry Method: Advances and Error Analysis

    Get PDF
    A full three-dimensional particle tracking system was developed and tested. By using three separate CCDs placed at the vertices of an equilateral triangle, the threedimensional location of particles can be determined. Particle locations measured at two different times can then be used to create a three-component, three-dimensional velocity field. Key developments are: the ability to accurately process overlapping particle images, offset CCDs to significantly improve effective resolution, allowance for dim particle images, and a hybrid particle tracking technique ideal for three-dimensional flows when only two sets of images exist. An in-depth theoretical error analysis was performed which gives the important sources of error and their effect on the overall system. This error analysis was verified through a series of experiments, which utilized a test target with 100 small dots per square inch. For displacements of 2.54mm the mean errors were less than 2% and the 90% confidence limits were less than 5.2 μm in the plane perpendicular to the camera axis, and 66 μm in the direction of the camera axis. The system was used for flow measurements around a delta wing at an angle of attack. These measurements show the successful implementation of the system for three-dimensional flow velocimetry

    On imploding cylindrical and spherical shock waves in a perfect gas

    Get PDF
    The problem of a cylindrically or spherically imploding and reflecting shock wave in a flow initially at rest is studied without the use of the strong-shock approximation. Dimensional arguments are first used to show that this flow admits a general solution where an infinitesimally weak shock from infinity strengthens as it converges towards the origin. For a perfect-gas equation of state, this solution depends only on the dimensionality of the flow and on the ratio of specific heats. The Guderley power-law result can then be interpreted as the leading-order, strong-shock approximation, valid near the origin at the implosion centre. We improve the Guderley solution by adding two further terms in the series expansion solution for both the incoming and the reflected shock waves. A series expansion, valid where the shock is still weak and very far from the origin, is also constructed. With an appropriate change of variables and using the exact shock-jump conditions, a numerical, characteristics-based solution is obtained describing the general shock motion from almost infinity to very close to the reflection point. Comparisons are made between the series expansions, the characteristics solution, and the results obtained using an Euler solver. These show that the addition of two terms to the Guderley solution significantly extends the range of validity of the strong-shock series expansion

    A Review of Automated Image Understanding within 3D Baggage Computed Tomography Security Screening

    Get PDF
    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT
    corecore