255 research outputs found
UV-B Exposure of Black Carrot (<i>Daucus carota</i> ssp. <i>sativus</i> var. <i>atrorubens</i>) Plants Promotes Growth, Accumulation of Anthocyanin, and Phenolic Compounds
© The Author(s).Black carrot (Daucus carota L. ssp. sativus var. atroburens) is a root vegetable with anthocyanins as major phenolic compounds. The accumulation of phenolic compounds is a common response to UV-B exposure, acting as protective compounds and as antioxidants. In the present study, black carrot plants grown under a 12-h photoperiod were supplemented with UV-B radiation (21.6 kj m−2 day−1) during the last two weeks of growth. Carrot taproots and tops were harvested separately, and the effect of the UV-B irradiance was evaluated in terms of size (biomass and length), total monomeric anthocyanin content (TMC), total phenolic content (TPC), and phytohormones levels. The results showed that UV-B irradiance promoted plant growth, as shown by the elevated root (30%) and top (24%) biomass, the increased TMC and TPC in the root (over 10%), and the increased TPC of the top (9%). A hormone analysis revealed that, in response to UV-B irradiance, the levels of abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) decreased in tops while the level of the cytokinins cis-zeatin (cZ) and trans-zeatinriboside (tZR) increased in roots, which correlated with an amplified growth and the accumulation of anthocyanins and phenolic compounds. Beyond the practical implications that this work may have, it contributes to the understanding of UV-B responses in black carrotThis research was funded by the Danish Ministry of Science, Innovation, and Education grant number 6111-00240B and “Fundación Séneca” of the Agency of Science and Technology of the Region of Murcia grant number 20405/SF/17.Peer reviewe
Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration
Varicella zoster virus (VZV) is a highly prevalent human pathogen that
establishes latency in neurons of the peripheral nervous system. Primary
infection causes varicella whereas reactivation results in zoster, which is
often followed by chronic pain in adults. Following infection of epithelial
cells in the respiratory tract, VZV spreads within the host by hijacking
leukocytes, including T cells, in the tonsils and other regional lymph nodes,
and modifying their activity. In spite of its importance in pathogenesis, the
mechanism of dissemination remains poorly understood. Here we addressed the
influence of VZV on leukocyte migration and found that the purified
recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines
with high affinity. Functional experiments show that VZV rSgC potentiates
chemokine activity, enhancing the migration of monocyte and T cell lines and,
most importantly, human tonsillar leukocytes at low chemokine concentrations.
Binding and potentiation of chemokine activity occurs through the C-terminal
part of gC ectodomain, containing predicted immunoglobulin-like domains. The
mechanism of action of VZV rSgC requires interaction with the chemokine and
signalling through the chemokine receptor. Finally, we show that VZV viral
particles enhance chemokine-dependent T cell migration and that gC is
partially required for this activity. We propose that VZV gC activity
facilitates the recruitment and subsequent infection of leukocytes and thereby
enhances VZV systemic dissemination in humans
A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients
Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates were very similar. In conclusion, the using of 2D environments in virtual therapy may be a more appropriate and comfortable way to perform tasks for upper limb rehabilitation of post-stroke patients, in terms of accuracy in order to effectuate optimal kinematic trajectories
Synchronization of Slow Cortical Rhythms During Motor Imagery-Based Brain–Machine Interface Control
Modulation of sensorimotor rhythm (SMR) power, a rhythmic brain oscillation physiologically linked
to motor imagery, is a popular Brain–Machine Interface (BMI) paradigm, but its interplay with slower
cortical rhythms, also involved in movement preparation and cognitive processing, is not entirely understood.
In this study, we evaluated the changes in phase and power of slow cortical activity in delta and
theta bands, during a motor imagery task controlled by an SMR-based BMI system. In Experiment
I, EEG of 20 right-handed healthy volunteers was recorded performing a motor-imagery task using an
SMR-based BMI controlling a visual animation, and during task-free intervals. In Experiment II, 10
subjects were evaluated along five daily sessions, while BMI-controlling same visual animation, a buzzer,
and a robotic hand exoskeleton. In both experiments, feedback received from the controlled device was
proportional to SMR power (11–14 Hz) detected by a real-time EEG-based system. Synchronization of
slow EEG frequencies along the trials was evaluated using inter-trial-phase coherence (ITPC). Results:
cortical oscillations of EEG in delta and theta frequencies synchronized at the onset and at the end of
both active and task-free trials; ITPC was significantly modulated by feedback sensory modality received
during the tasks; and ITPC synchronization progressively increased along the training. These findings
suggest that phase-locking of slow rhythms and resetting by sensory afferences might be a functionally
relevant mechanism in cortical control of motor function. We propose that analysis of phase synchronization
of slow cortical rhythms might also improve identification of temporal edges in BMI tasks and might
help to develop physiological markers for identification of context task switching and practice-related
changes in brain function, with potentially important implications for design and monitoring of motor
imagery-based BMI systems, an emerging tool in neurorehabilitation of stro
Development of a model for anemia of inflammation that is relevant to critical care
Background: Anemia of inflammation (AI) is common in critically ill patients. Although this syndrome negatively impacts the outcome of critical illness, understanding of its pathophysiology is limited. Also, new therapies that increase iron availability for erythropoiesis during AI are upcoming. A model of AI induced by bacterial infections that are relevant for the critically ill is currently not available. This paper describes the development of an animal model for AI that is relevant for critical care research. Results: In experiments with rats, the rats were inoculated either repeatedly or with a slow release of Streptococcus pneumoniae or Pseudomonas aeruginosa. Rats became ill, but their hemoglobin levels remained stable. The use of a higher dose of bacteria resulted in a lethal model. Then, we turned to a model with longer disease duration, using pigs that were supported by mechanical ventilation after inoculation with P. aeruginosa. The pigs became septic 12 to 24 h after inoculation, with a statistically significant decrease in mean arterial pressure and base excess, while heart rate tended to increase. Pigs needed resuscitation and vasopressor therapy to maintain a mean arterial pressure > 60 mmHg. After 72 h, the pigs developed anemia (baseline 9.9 g/dl vs. 72 h, 7.6 g/dl, p = 0.01), characterized by statistically significant decreased iron levels, decreased transferrin saturation, and increased ferritin. Hepcidin levels tended to increase and transferrin levels tended to decrease. Conclusions: Using pathogens commonly involved in pulmonary sepsis, AI could not be induced in rats. Conversely, in pigs, P. aeruginosa induced pulmonary sepsis with concomitant AI. This AI model can be applied to study the pathophysiology of AI in the critically ill and to investigate the effectivity and toxicity of new therapies that aim to increase iron availability. Keywords: Anemia of inflammation; Animal model; ICU; Infection; Iron
Tele-rehabilitation versus local rehabilitation therapies assisted by robotic devices: a pilot study with patients
The present study aims to evaluate the advantages of a master-slave robotic rehabilitation therapy in which the patient is assisted in real-time by a therapist. We have also explored if this type of strategy is applicable in a tele-rehabilitation environment. A pilot study has been carried out involving 10 patients who have performed a point-to-point rehabilitation exercise supported by three assistance modalities: fixed assistance (without therapist interaction), local therapist assistance, and remote therapist assistance in a simulated tele-rehabiliation scenario. The rehabilitation exercise will be performed using an upper-limb rehabilitation robotic device that assists the patients through force fields. The results suggest that the assistance provided by the therapist is better adapted to patient needs than fixed assistance mode. Therefore, it maximizes the patient's level of effort, which is an important aspect to improve the rehabilitation outcomes. We have also seen that in a tele-rehabilitation environment it is more difficult to assess when to assist the patient than locally. However, the assistance suits patients better than the fixed assistance mode
- …