165 research outputs found

    Quantifying within-host diversity of H5N1 influenza viruses in humans and poultry in Cambodia

    Get PDF
    Avian influenza viruses (AIVs) periodically cross species barriers and infect humans. The likelihood that an AIV will evolve mammalian transmissibility depends on acquiring and selecting mutations during spillover, but data from natural infection is limited. We analyze deep sequencing data from infected humans and domestic ducks in Cambodia to examine how H5N1 viruses evolve during spillover. Overall, viral populations in both species are predominated by low-frequency (5% frequency within-host. However, short infection times, genetic drift, and purifying selection likely restrict their ability to evolve extensively during a single infection. Applying evolutionary methods to sequence data, we reveal a detailed view of H5N1 virus adaptive potential, and develop a foundation for studying host-adaptation in other zoonotic viruses

    Search for the best indicators for the presence of a VPS13B gene mutation and confirmation of diagnostic criteria in a series of 34 patients genotyped for suspected Cohen syndrome

    Get PDF
    BACKGROUND: Cohen syndrome is a rare autosomal recessive inherited disorder that results from mutations of the VPS13B gene. Clinical features consist of a combination of mental retardation, facial dysmorphism, postnatal microcephaly, truncal obesity, slender extremities, joint hyperextensibility, myopia, progressive chorioretinal dystrophy, and intermittent neutropenia.PATIENTS AND METHODS: The aim of the study was to determine which of the above clinical features were the best indicators for the presence of VPS13B gene mutations in a series of 34 patients with suspected Cohen syndrome referred for molecular analysis of VPS13B. RESULTS: 14 VPS13B gene mutations were identified in 12 patients, and no mutation was found in 22 patients. The presence of chorioretinal dystrophy (92% vs 32%, p=0.0023), intermittent neutropenia (92% vs 5%, p<0.001), and postnatal microcephaly (100% vs 48%, p=0.0045) was significantly higher in the group of patients with a VPS13B gene mutation compared to the group of patients without a mutation. All patients with VPS13B mutations had chorioretinal dystrophy and/or intermittent neutropenia. The Kolehmainen diagnostic criteria provided 100% sensibility and 77% specificity when applied to this series. CONCLUSION: From this study and a review of more than 160 genotyped cases from the literature, it is concluded that, given the large size of the gene, VPS13B screening is not indicated in the absence of chorioretinal dystrophy or neutropenia in patients aged over 5 years. The follow-up of young patients could be a satisfactory alternative unless there are some reproductive issues

    Human adaptation of Ebola virus during the West African outbreak

    Get PDF
    The 2013–2016 outbreak of Ebola virus (EBOV) in West Africa was the largest recorded. It began following the cross-species transmission of EBOV from an animal reservoir, most likely bats, into humans, with phylogenetic analysis revealing the cocirculation of several viral lineages. We hypothesized that this prolonged human circulation led to genomic changes that increased viral transmissibility in humans. We generated a synthetic glycoprotein (GP) construct based on the earliest reported isolate and introduced amino acid substitutions that defined viral lineages. Mutant GPs were used to generate a panel of pseudoviruses, which were used to infect different human and bat cell lines. These data revealed that specific amino acid substitutions in the EBOV GP have increased tropism for human cells, while reducing tropism for bat cells. Such increased infectivity may have enhanced the ability of EBOV to transmit among humans and contributed to the wide geographic distribution of some viral lineages

    Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome

    Get PDF
    Galloway-Mowat syndrome is a rare autosomal-recessive condition characterized by nephrotic syndrome associated with microcephaly and neurological impairment. Through a combination of autozygosity mapping and whole-exome sequencing, we identified WDR73 as a gene in which mutations cause Galloway-Mowat syndrome in two unrelated families. WDR73 encodes a WD40-repeat-containing protein of unknown function. Here, we show that WDR73 was present in the brain and kidney and was located diffusely in the cytoplasm during interphase but relocalized to spindle poles and astral microtubules during mitosis. Fibroblasts from one affected child and WDR73-depleted podocytes displayed abnormal nuclear morphology, low cell viability, and alterations of the microtubule network. These data suggest that WDR73 plays a crucial role in the maintenance of cell architecture and cell survival. Altogether, WDR73 mutations cause Galloway-Mowat syndrome in a particular subset of individuals presenting with late-onset nephrotic syndrome, postnatal microcephaly, severe intellectual disability, and homogenous brain MRI features. WDR73 is another example of a gene involved in a disease affecting both the kidney glomerulus and the CNS

    Tannerella forsythia, a periodontal pathogen entering the genomic era

    Get PDF
    Several questions need to be addressed to evaluate whether Tannerella forsythia is to be considered a periodontal pathogen. T. forsythia has been detected in periodontal health and disease, so could it be a pathogen? The species was not detected in many studies despite finding other putative pathogens, so could it be important in pathogenicity? The challenges of working with T. forsythia include its fastidious and anaerobic growth requirements for cultural detection. Thus, studies associating T. forsythia with periodontal and other oral infections have used noncultural approaches (immunoassays and DNA-based assays) in addition to cultural approaches. We feel the timing of this review represents an interesting transition period in our understanding of the relationships of species with infection. Information from the recently released full genome sequence data of T. forsythia will provide new approaches and tools that can be directed to assess pathogenicity. Furthermore, molecular assessment of gene expression will provide a new understanding of the pathogenical potential of the species, and its effect on the host. T. forsythia, was described in reviews focusing on periodontal pathogens associated with herpesvirus detection (200), species for which genome projects were underway (41), members of polybacterial periodontal pathogenic consortium (91), and participants in periodontal microbial ecology (202). We will describe the history, taxonomy, and characteristics of T. forsythia, and related species or phylotypes in the genus Tannerella. To assess the pathogenic potential of T. forsythia, we first describe species associations with periodontal and other infections, including animal models, as has been the traditional approach arising from Koch’s postulates (203). Criteria for pathogenicity were expanded to incorporate sequence- derived information (58), and again more recently to include molecular signatures of pathogens and disease (170). We used sequence and genome-derived information, in addition to biofilm, pathogenic mediators, and host responses, to further explore the pathogenic potential of T. forsythia

    Duplication of 10q24 locus: broadening the clinical and radiological spectrum

    Get PDF
    Split-hand-split-foot malformation (SHFM) is a rare condition that occurs in 1 in 8500-25,000 newborns and accounts for 15% of all limb reduction defects. SHFM is heterogeneous and can be isolated, associated with other malformations, or syndromic. The mode of inheritance is mostly autosomal dominant with incomplete penetrance, but can be X-linked or autosomal recessive. Seven loci are currently known: SHFM1 at 7q21.2q22.1 (DLX5 gene), SHFM2 at Xq26, SHFM3 at 10q24q25, SHFM4 at 3q27 (TP63 gene), SHFM5 at 2q31 and SHFM6 as a result of variants in WNT10B (chromosome 12q13). Duplications at 17p13.3 are seen in SHFM when isolated or associated with long bone deficiency. Tandem genomic duplications at chromosome 10q24 involving at least the DACTYLIN gene are associated with SHFM3. No point variant in any of the genes residing within the region has been identified so far, but duplication of exon 1 of the BTRC gene may explain the phenotype, with likely complex alterations of gene regulation mechanisms that would impair limb morphogenesis. We report on 32 new index cases identified by array-CGH and/or by qPCR, including some prenatal ones, leading to termination for the most severe. Twenty-two cases were presenting with SHFM and 7 with monodactyly only. Three had an overlapping phenotype. Additional findings were identified in 5 (renal dysplasia, cutis aplasia, hypogonadism and agenesis of corpus callosum with hydrocephalus). We present their clinical and radiological findings and review the literature on this rearrangement that seems to be one of the most frequent cause of SHFM
    • …
    corecore