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Tannerella forsythia, a periodontal 
pathogen entering the genomic era 

Anne C. R. Tanner & Jacques Izard 

Several questions need to be addressed to evaluate whether Tannerella 
forsythia is to be considered a periodontal pathogen. T. forsythia has been 
detected in periodontal health and disease, so could it be a pathogen? 
The species was not detected in many studies despite finding other pu-
tative pathogens, so could it be important in pathogenicity? The chal-
lenges of working with T. forsythia include its fastidious and anaerobic 
growth requirements for cultural detection. Thus, studies associating T. 
forsythia with periodontal and other oral infections have used noncul-
tural approaches (immunoassays and DNA-based assays) in addition to 
cultural approaches. We feel the timing of this review represents an in-
teresting transition period in our understanding of the relationships of 
species with infection. Information from the recently released full ge-
nome sequence data of T. forsythia will provide new approaches and 
tools that can be directed to assess pathogenicity. Furthermore, molec-
ular assessment of gene expression will provide a new understanding 
of the pathogenical potential of the species, and its effect on the host. 

T. forsythia, was described in reviews focusing on periodontal patho-
gens associated with herpesvirus detection (200), species for which 
genome projects were underway (41), members of polybacterial peri-
odontal pathogenic consortium (91), and participants in periodontal 
microbial ecology (202). We will describe the history, taxonomy, and 

digitalcommons.unl.edu

Published in Periodontology 2000, vol 42 (2006), pp 88–113. 
doi:10.1111/j.1600-0757.2006.00184.x  
Copyright © 2006 Anne C. R. Tanner & Jacques Izard; journal compilation © 2006 Blackwell 
Munksgaard. Used by permission.   



Ta n n e r  &  I z a r d  i n  P e r i o d o n t o lo gy  2 0 0 0  4 2  ( 2 0 0 6 )        2

characteristics of T. forsythia, and related species or phylotypes in the 
genus Tannerella. To assess the pathogenic potential of T. forsythia, we 
first describe species associations with periodontal and other infections, 
including animal models, as has been the traditional approach arising 
from Koch’s postulates (203). Criteria for pathogenicity were expanded 
to incorporate sequence- derived information (58), and again more re-
cently to include molecular signatures of pathogens and disease (170). 
We used sequence and genome-derived information, in addition to bio-
film, pathogenic mediators, and host responses, to further explore the 
pathogenic potential of T. forsythia. 

History and taxonomy 

T. forsythia was first isolated at The Forsyth Institute from subjects 
with progressing advanced periodontitis in the mid-1970s and was 
described as “fusiform Bacteroides” by Tanner et al. (225). Around the 
same time, T. forsythia was isolated as one of the Bacteroides group from 
the extensive cultural studies of periodontal infections by Moore and 
Holdeman- Moore at the Anaerobe Laboratory of the Virginia Polytech-
nic Institute (VPI). The species was subsequently detected by culture 
from oral samples at the Forsyth and VPI laboratories from progress-
ing periodontitis (43, 153, 229), endodontic infections (232), gingivitis 
and early periodontitis (151, 221), refractory periodontitis (81), and 
peri-implantitis (223). 

T. forsythia was initially a taxonomic enigma because it did not resem-
ble described species of oral or enteric gram-negative anaerobic rods, 
particularly in its cell morphology and slow and fastidious growth re-
quirements. As a gram-negative anaerobic rod with tapered ends, it was 
described as “fusiform Bacteroides” in our cultural report of progress-
ing advanced periodontitis (225). Sufficient cells for characterization 
were obtained by enhancing growth by culturing T. forsythia on blood 
agar adjacent to Fusobacterium nucleatum cells. Growth stimulation by a 
number of species was observed during an extensive search to improve 
growth of the species (42). The moles percent (mol%) DNA content was 
determined to be around 46%, and is currently reported at 46.8% based 
on genome sequence (http://www.oralgen.lanl.gov). Strains collected 
from subgingival and endodontic lesions showed over 75–100% DNA 
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homology with each other. DNA homology with enteric Bacteroides spe-
cies was for 0–31% Bacteroides fragilis, 0–28% for Bacteroides thetaio-
taomicron, 0–20% for Bacteroides vulgatus, and 0–48% for Bacteroides 
distasonis. DNA homology with other oral “Bacteroides” (now Prevotella) 
species, was 0–30% for Prevotella oris, 5–14% for Prevotella oralis, and 
11–17% for Prevotella buccae. 

The phylogeny of oral Bacteroides species in the Cytophaga–Flavobac-
terium–Bacteroides family was reorganized after Bacteroides forsythus 
was described. Most oral “Bacteroides” species were reclassified to ei-
ther Porphyromonas (188) or Prevotella (189), conserving the genus Bac-
teroides for the B. fragilis-like enteric species. Several species including 
B. forsythus and Bacteroides distasonis, did not belong in Porphyromo-
nas, Prevotella or Bacteroides. These relationships were clarified in the 
phylogenetic studies comparing 16S rRNA sequence data by Paster et 
al. (168). These data confirmed the separation of oral gram-negative an-
aerobic rod species from enteric species. In the 16S rRNA sequence anal-
ysis (168), B. forsythus grouped with B. distasonis, consistent with the 
previous DNA homology data, but these two species clustered outside 
the Prevotella and Bacteroides groups. B. forsythus clustered most closely 
with Porphyromonas species, but not closely enough to be considered as 
Porphyromonas. The 16S rRNA phylogenetic analysis supporting reclas-
sification of B. forsythus to the genus Tannerella further expanded the 
range of Porphyromonas, Bacteroides, and Prevotella species examined 
(179). The genus name was chosen for Anne Tanner who described the 
species as B. forsythus in 1986 (232). The Sakamoto 16S rRNA phyloge-
netic analysis confirmed the separation of T. forsythia, B. distasonis, and 
Bacteroides merdae (the latter both enteric species) from the other gen-
era (179). The species was first formally reclassified to Tannerella for-
sythensis, then reclassified to T. forsythia (143) following a proposal to 
change the specific epithet (Brian J. Tindall 2005, personal communi-
cation). This specific epithet change was based on The Forsyth Institute 
being named for the Forsyth brothers, James, Thomas, and John, along 
with their sister Mary who founded the institution in 1910 as The For-
syth Dental Infirmary for Children. The specific epithet honors these 
benefactors. 

The current taxonomic position of the genus Tannerella and related 
genera within the phylum Bacteroidetes based on 16S rRNA phylogenetic 
analysis is illustrated in Fig. 1. In particular, this figure illustrates the 
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phylogenetic relationship between T. forsythia, B. distasonis, and B. mer-
dae. Three Porphyromonas species are also included to illustrate their 
relationship with Tannerella.  

T. forsythia from non-human hosts and other Tannerella phylotypes 

Strains of T. forsythia have been isolated from the subgingival plaque of 
monkeys, and in humans from cat and dog bite wounds (Fig. 2). The T. 
forsythia strains isolated from monkeys were quite similar to the T. for-
sythia strains from humans both biochemically and in their requirement 
for N-acetylmuramic acid (12). Comparison of human and monkey iso-
lates with those from cat and dog bite wounds indicated that dog and cat 
bite isolates differed in their lack of requirement for N-acetylmuramic 
acid for growth, and catalase activity. In addition, cat and dog bite iso-
lates differed by their phenylalanine aminopeptidase activity compared 
to the monkey isolates (94). Previous phylogenetic analysis of 16S rRNA 
gene sequences indicated that the monkey isolates were more similar 

Fig. 1. Phylogenetic tree of the genus Tannerella and other genera in the phylum Bac-
teroidetes. The tree was constructed from aligned sequences using the neighbor-join-
ing method. The naming scheme is as follows: (1) for cultivated species the official 
or provisional name was used; for not yet cultivated taxa the designation was to the 
closest genus or family (e.g. Porphyromonadaceae); (2) the 16S rRNA gene accession 
number is in curly brackets; and (3) original sample/isolate source. The bar denotes 
a 5% difference in sequence measured by summing the lengths of the horizontal lines 
between taxa.  



Ta n n e r  &  I z a r d  i n  P e r i o d o n t o lo gy  2 0 0 0  4 2  ( 2 0 0 6 )        5

to the type strain from human, than to the dog and cat isolates (94). The 
new phylogenetic analysis in Fig. 2 illustrates that the monkey isolates 
and strains from dog and cat bite wounds are closely related to human 
isolates of T. forsythia and all belong in the same species.  

Three distinct Tannerella phylotypes have been recognized from hu-
man subgingival sites. In addition to T. forsythia, two other phylotypes, 
BU063 and BU045, were identified from a clone library (167). The phy-
logenetic trees of Fig 1 and 2 illustrate that the oral clones BU045 and 
BU063 fall within the genus Tannerella but not within the T. forsythia 
species. There are currently no cultured isolates with sequences similar 
to those of the BU045 and BU063 clones. Sequence-based polymerase 
chain reaction methods indicated that T. forsythia was detected more 
frequently from periodontitis, relative to the Tannerella BU063 clone 
phylotype which was detected more frequently from periodontal health 

Fig. 2. Tannerella forsythia 16S rRNA distribution based on sequences deposited in 
GenBank. The tree was constructed from aligned sequences using the neighbor-join-
ing method. The naming scheme is as follow: (1) official or provisional names; (2) 
the 16S rRNA gene accession number in curly brackets; and (3) original sample/iso-
late source. The bar denotes a 5% difference in sequence as measured by summing 
the lengths of the horizontal lines between taxa. The 16S rRNA gene sequences from 
monkey oral isolate (12), as well as dog and cat bite (94) have been deposited in Gen-
Bank for the purpose of this review under the accession numbers DQ341410, and 
DQ344914–DQ344918.   
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(132). In the latter study, DNA was first amplified from plaque samples 
using universal (broad range) primers for regions in 16S and 23S genes. 
A second, nested, polymerase chain reaction amplification included a 
sequence in the 23S rDNA gene, thus amplifying the intergenic spacer 
region. This analysis yielded product/amplicons at different molecular 
weights, corresponding to the different phylotypes (132). 

Examination of 16S rRNA sequence data deposited in GenBank indi-
cates that several other Tannerella organisms have been detected in the 
soil and from the gut of insects (Fig. 1). These microorganisms emerged 
from polymerase chain reaction-cloning sequencing analyses, and only 
clone sequences are available, not cultured isolates. These phylotypes 
were detected in the guts of soil-feeding termites (186), scarab beetle 
larvae (47), and wood-eating termites (194). These Tannerella species 
may co-exist with Treponema species that have recently been cultured 
with unusual and fastidious growth requirements from termite guts 
(70). The environment for these insect-isolated Tannerella and Trepo-
nema organisms is clearly different from that of the human oral cavity, 
with markedly different nutrient sources. Detection of phylotypes of gen-
era in oral and environmental samples has also been reported for uncul-
tivated TM7 (96, 167), Obsidian pool (96, 167), and Archea (131). One 
might speculate that soil organisms were the original source for these 
fastidious species and that the growth requirements of Tannerella and 
uncultivated phylotypes may reflect the original source of the species. 

Characteristics of T. forsythia and identification in clinical 
samples 

Characteristics of isolates 

The growth of T. forsythia is stimulated by N-acetylmuramic acid (260). 
The shape of T. forsythia cells and colonies varies depending on the 
growth conditions. Cells of cultures grown on agar media without Nac-
etylmuramic acid are large, filamentous, and pleomorphic, with tapered 
(fusiform) ends, also with spheroids. As described above, the growth re-
quirement for N-acetylmuramic acid was observed for strains isolated 
from dental plaque from humans and monkeys (Macaca fascicularis) 
(12), but not for the T. forsythia strains isolated from dog and cat bite 
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wounds (94). T. forsythia has a distinctive ultrastructure (Fig. 3). Below 
a distinctive outer layer (S layer) there is an inner membrane, and an 
outer membrane (232). Colonies are tiny and opaque. Colony morphol-
ogy changes in the presence of either N-acetylmuramic acid or a growth-
stimulating species, for example F. nucleatum (232). Colonies become 
pale pink and speckled, circular, entire, slightly convex, and may have a 
depressed center (donut-shaped). In the presence of N-acetylmuramic 
acid, cells become regularly shaped, short, gram-negative rods (12).   

Biochemically T. forsythia can be deceptively inert when tested using 
slight broth growth achieved in the absence of N-acetylmuramic acid. 
When cells are harvested from agar the biochemical reactivity of the 
species becomes apparent. Biochemical reactivity from resting cell tests 
(enzyme substrate tests) has been performed on commercially avail-
able strips (179, 230) and from chromogenic reagents (145). T. forsythia 

Fig. 3. Cell cross-section of Tannerella forsythia ATCC 43037. The cells were fixed in so-
dium cacodylate buffer, dehydrated, and embedded in Epon. Sections were mounted on 
grids and stained with uranyl acetate and lead citrate (232). (1) Inner-membrane, (2) 
Outer-membrane, and (3) Distinctive outer layer. Scale bar = 0.1 μm. Reprinted with 
the permission of the International Journal of Systemic and Evolutionary Microbiology.   
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has the ability to metabolize a range of substrates and, in common with 
many enteric Bacteroides species, to hydrolyze esculin. In contrast to 
the enteric species, however, T. forsythia is not resistant to bile, thus it 
does not grow on the routine Bacteroides medium for enteric species, 
Bile Esculin Agar (179). Because of slight broth growth of T. forsythia 
when originally described, characterization included whole cell protein 
profiles on sodium dodecyl sulfate–polyacrylamide gel electrophoresis, 
which for isolates of human origin demonstrated a signature double 
band greater than 200 kDA (232). All strains tested, except one monkey 
isolate (94), also demonstrated these protein bands, which have been 
characterized as S-layer bands (90). 

Cultural isolation of periodontal species, particularly the nutrition-
ally fastidious pathogens of the “red complex” (205), requires more than 
including all the various growth-stimulating factors in a single medium. 
Isolation and cultivation of oral treponemes, including Treponema den-
ticola, is routinely performed in specialized media (104, 241), which is 
commercially available (Anaerobe Systems, Morgan Hill, CA). While Por-
phyromonas gingivalis and T. forsythia will grow on media supplemented 
with vitamin K (menadione) for P. gingivalis, and N-acetylmuramic acid 
for T. forsythia, each species is inhibited by the growth requirement of 
the other, so compromising primary isolation (226). Both T. forsythia and 
P. gingivalis are anaerobes but it also has been suggested that they may, 
similar to B. fragilis (9), be able to grow in the presence of low levels of 
oxygen. This has been demonstrated for P. gingivalis (36). On primary 
isolation from oral samples, however, strict anaerobiosis favors isola-
tion of T. forsythia and other subgingival anaerobes (39). 

Antibiotic sensitivity 

T. forsythia is generally sensitive to antibiotics that are active against 
anaerobes. Most active antibiotics were amoxicillin with clavulanate 
(100%), ampicillin (98%), doxycycline (98%), amoxocillin (96%), tet-
racycline (90%), and clindamycin (86%) (126). Fairly active antibiotics 
were penicillin (70%) and spiramycin (68%) whereas poorly active an-
tibiotics were erythromycin (54%) and ciprofloxacin (46%) (126). In 
addition, T. forsythia was found to be sensitive to metronidazole (216). 
Results from a study of Brazilian isolates provided similar observations 
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to these studies (139). Sensitivity to tetracycline is consistent with the 
failure to detect T. forsythia-resistant strains after local tetracycline ther-
apy (67). Resistance to penicillin can be mediated by the production of 
β-lactamase. Isolates of T. forsythia with β-lactamase activity were iden-
tified from two of 23 (8%) untreated adult periodontitis subjects (11% 
two of 19 total isolates) (246). Addition of clavulanic acid to amoxicillin 
overcomes β-lactamase inactivation of penicillin, as described in a re-
cent review (253). 

The genome sequence of T. forsythia ATCC 43037 (see below) includes 
a copy of tet(Q), a gene encoding the ribosome protection protein re-
sulting in antibiotic resistance to tetracycline. This observation adds T. 
forsythia to the list of oral organisms with this mechanism of antibiotic 
resistance (251). Not all genomes from oral isolates encode for a ribo-
some protection protein, like tet(Q), or an efflux pump providing an-
tibiotic resistance to the organism (251). In addition to tet(Q) genes, 
strains of T. forsythia contained erm(F) which codes for erythromycin 
resistance (244). 

Other antibiotic, or antimicrobial formulations with activity against 
T. forsythia include flurithromycin (134), moxifloxacin (149), and fano-
penem (148). T. forsythia is sensitive to several non-antibiotic, antibac-
terial approaches which are designed for topical or local administration. 
These include silver nitrate (210), and chlorin e6 conjugated to pentaly-
sine-5K in conjunction with laser photodynamic therapy (172). Topical 
activity of chlorhexidine gluconate (PerioChip) against T. forsythia pro-
vided little suppression compared with scaling and root planing (28). 
Good activity in vitro was demonstrated using a different polymer-based 
vehicle (266). 

Identification from clinical samples 

A number of methods have been used to detect T. forsythia in clinical 
samples and host tissues. Detection methods included immunoassay and 
genetic/molecular assays. In this review we focus on methods used to 
identify T. forsythia in samples rather than providing a comprehensive 
review of microbiological identification methods, for which there are al-
ready some excellent reviews (23, 161, 181, 184, 196, 202). 
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Cultural identification 

Identification tests when using cultural analysis were simplified from 
the range of tests used to characterize the species for classification and 
taxonomy. Slots presented a scheme for rapid identification of P. gingi-
valis (then Bacteroides gingivalis) from culture (199) comprising col-
ony pigmentation, lack of fluorescence by long-wave UV light, and neg-
ative lactose fermentation (MUG test). This was adapted to T. forsythia, 
which differs in colony morphology and positive lactose fermentation 
(MUG test). Other strain identification schemes incorporate character-
ization using, for example, chromogenic test strips from API, or fluo-
rogenic enzyme substrate tests (145). Key tests include α-glucosidase, 
β-glucosidase, sialidase, and negative indole in addition to positive tryp-
sin-like activity (12). In a comparison of culture with a DNA-probe assay, 
definitive identification of T. forsythia was obtained by a combination of 
colony morphology, trypsin-like activity and sodium dodecyl sulfate– 
polyacrylamide gel electrophoresis for a specific identification (226). 

The ability of T. forsythia to hydrolyze the trypsinlike benzyol-dl-ar-
ginine-2-naphthylamide, “BANA”, has been incorporated in the test for 
periodontal pathogens pioneered by Loesche (136). Trypsin-like activ-
ity is shared by P. gingivalis and T. denticola of the Socransky “red com-
plex” (205). Other subgingival species are also BANA-positive, but not 
as strongly as P. gingivalis, T. denticola, and T. forsythia, thus making this 
biochemical marker a test for the presence of these species. The BANA 
test in the U.S.A., or SK-013 test in Japan, was devised for rapid clinical 
detection of a periodontal pathogen-containing microbiota (137, 187). 

Immunological assays 

Antibody raised against T. forsythia cells and used for species identifi-
cation, did not cross-react with P. gingivalis, Prevotella intermedia, or 
Prevotella melaninogenica (44). Antibody to T. forsythia was serolog-
ically distinct from other oral and clinical “Bacteroides” species (now 
Bacteroides, Porphyromonas, and Prevotella) (45). Lai et al. (125) dem-
onstrated that polyclonal antibody to T. forsythia in an indirect immu-
nofluorescence assay did not react with an extended range of oral gram-
negative and gram-positive species. Monoclonal antibodies were also 
produced against T. forsythia that were strain and species specific and 
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that did not react with other subgingival species (255). They were sub-
sequently used in enzyme-linked immunosorbent assays and immuno-
fluorescence assays (255). Immunoassays have been used extensively 
by several groups of investigators for rapid identification of T. forsythia 
in periodontal health and diseases (Table 1). Direct identification from 
clinical samples bypasses the challenges of species culture. Lai et al. in 
Philadelphia U.S.A. (125) used polyclonal antibody in an immunoflu-
orescence assay, and demonstrated change in detection after therapy. 
Gmu¨ r et al., in Zurich Switzerland, used specific monoclonal antibod-
ies in immunofluorescence assays to evaluate associations of T. forsythia 
with periodontal health and disease (63–65). Zambon et al. incorpo-
rated immunofluorescence assay identification of T. forsythia to evalu-
ate microbial sampling protocols (75) and in studies of risk indicators 
for periodontal disease (72, 73). Immunofluorescence assay to identify 
T. forsythia was also used in our comparison of rapid (chair-side) DNA 
probe identification with culture to clarify the status of culture-negative, 
probe-positive samples (226). 

Molecular identification 

Molecular methods for species identification in samples have evolved 
from DNA/DNA homology to sequence-based methods used in microbial 
taxonomy (167, 179, 224, 232). The diversity of the oral species based 
on molecular methods used the comprehensive polymerase chain re-
action/cloning/ sequencing steps (124, 157, 167, 182). Rapid identifi-
cation of T. forsythia using molecular methods may be broadly grouped 
into DNA probe and polymerase chain reaction methods, although sev-
eral approaches incorporate both technologies. 

DNA probes 

DNA probe methods have been used in conjunction with culture or di-
rectly from oral samples. DNA probes have been made from whole ge-
nomic DNA, from species-specific cloned DNA fragments or oligonucle-
otide sequences. Whole genomic probes for T. forsythia showed minimal 
cross-reactivity with other species (202, 208). The colony-lift method 
used colonies from primary isolation plates that had been transferred 
(lifted) onto nylon membranes (74). Using primary isolation plates 
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allowed species amplification by assaying colonies of isolates rather 
than cells in plaque samples (74). Direct analysis of clinical samples us-
ing whole genomic DNA probes for T. forsythia had a sensitivity of 103 to 
104 cells (138). Use of whole genomic probes was expanded by Socran-
sky et al. (208) to analyze several species against multiple samples si-
multaneously using a “checkerboard” assay. This method can assay sub-
gingival samples ranging in size from 104 to 107 cells in a sample. Larger 
samples can be analyzed by diluting samples, thus avoiding cross-reac-
tivity between species analyzed using whole-genomic probes. A combi-
nation of culture and whole genomic checkerboard analysis was devel-
oped to assay antimicrobial susceptibility of subgingival samples (51) 
and artificial biofilms (209). In this assay all colonies from plates were 
harvested, the cells were diluted into the assay range, and tested against 
whole genomic probes in the checkerboard assay. Randomly cloned DNA 
probes to T. forsythia were more specific than whole genomic probes but 
less sensitive for species detection (258). Cloned probes are the basis of 
a commercial laboratory assay which is available in Europe (as DMDx/
PATHOTEK®)s (23). 

DNA probe methods also use oligonucleotide probes to identify T. 
forsythia and other species in oral and clinical samples. Oligonucleotide 
probe detection (38) of T. forsythia and other selected species were used 
in the evaluation of local tetracycline therapy for periodontitis (68). 
These oligonucleotide probes included several different oligonucleotide 
sequences complementary to species-specific 16S rRNA sequences to 
improve the sensitivity of species identification and quantification in 
clinical plaque samples. The reverse capture–oligonucleotide probe as-
say uses a similar checkerboard apparatus as that used in the whole ge-
nomic probe checkerboard assay. To use oligonucleotide probes, samples 
first undergo a polymerase chain reaction amplification using broad-
range “universal” primers (166, 208). Microarrays or DNA chips repre-
sent a miniaturized version of assaying samples to multiple species us-
ing oligonucleotide DNA probes. One commercially available microarray, 
the ParoCheck® (Greiner, Bio-One GmbH, Frickenhausen, Germany) in-
cludes T. forsythia among the 20 assayed species. 

Direct polymerase chain reaction methods 

Detection of several putative periodontal pathogens including T. for-
sythia directly from subgingival samples using species-specific primers 
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in a polymerase chain reaction was described by Slots and co-workers 
(6, 201). Different primer sets have been described by a number of in-
vestigators to detect T. forsythia in periodontal samples (84, 119). Poly-
merase chain reaction methods were also used to detect T. forsythia in 
endodontic lesions (25). Multiplex polymerase chain reaction allows the 
detection of several species in a single polymerase chain reaction assay. 
Multiplex polymerase chain reaction assays including T. forsythia have 
been described (14, 15, 24, 233). Several recent reports describe the use 
of real-time polymerase chain reaction to quantify T. forsythia in sam-
ples (106, 122, 127, 180, 214). 

Comparisons between identification methods 

Culture and polymerase chain reaction-based methods 

Cultural detection of T. forsythia is compromised if N-acetylmuramic acid 
is not included in the isolation medium and too short (<10 days) an in-
cubation time is used for primary isolation. There are few comparisons 
between polymerase chain reaction followed by cloning and sequence-
based identification and culture. One such comparison used five end-
odontic samples and reported that cultural techniques favored detec-
tion of Bacteroidetes over the polymerase chain reaction-based method. 
T. forsythia was detected in one subject by culture but not by the poly-
merase chain reactionbased method (157). This finding led to an im-
provement of the polymerase chain reaction primers, for Bacteroidetes 
(33) but no further comparisons with culture were reported. 

Other studies comparing the cultural detection of T. forsythia with 
other methods, detected the species more frequently by non-cultural 
methods. Immunofluorescence assays detected T. forsythia, P. gingivalis, 
P. intermedia, and Campylobacter rectus, more frequently than by culture 
(62). Furthermore, comparisons between culture and rapid polymerase 
chain reaction-based methods for T. forsythia indicated increased detec-
tion frequency for the polymerase chain reaction methods. One study de-
tected 21% culture positive compared with 27% positive in a multiplex 
polymerase chain reaction assay (49). Culture compared with real-time 
polymerase chain reaction indicated that all culture positive samples 
were detected by real-time polymerase chain reaction, but that culture 
failed to detect a further 28% of samples detected only by polymerase 
chain reaction (106). A more marked difference between culture and 
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real-time polymerase chain reaction was reported by Lau et al. (127), 
with a detection of T. forsythia of 12/92 by culture and 82/92 by real 
time polymerase chain reaction, which detected all the culture positive 
samples. 

Culture and DNA probes 

A comparison between culture (with N-acetylmuramic acid in primary 
isolation plates) and whole genomic probes in the checkerboard assay 
also detected T. forsythia more frequently by the genetic assay than by 
culture (164). The T. forsythia was detected by both methods in 27% of 
samples, and by culture or probe in 11.5% and 61.5% of samples, re-
spectively (164). An oligonucleotide probe assay comprising two probe 
sequences also detected T. forsythia more frequently than by culture 
(150). In that study 18/20 samples were probe-positive compared with 
13/20 culture-positive. These authors observed that in probe-positive, 
culture-negative samples, T. forsythia was detected in very low propor-
tions (<1%) of the total microbiota (150), which was below the detection 
threshold for non-selective culture (150). Similar findings were reported 
using a similar composite probe to the latter report but used in a rapid 
chair-side assay (226, 236). Ali et al. (3) compared data from the same 
chair-side probe assay with culture data and detected a much higher 
proportion of T. forsythia-positive samples by probe (15/54) compared 
with anaerobic culture (3/54). In a second study that included whole 
genomic probe checkerboard assay, it was found that 28% and 18% of 
the samples were positive by probe and culture, respectively (2). The 
checkerboard assay, however, detected a higher proportion of positive 
samples (81%) than the oligonucleotide test or culture (2). The Paro-
Check® (Greiner, Bio-One GmbH, Frickenhausen, Germany) microarray 
was more sensitive for T. forsythia than culture. T. forsythia was detected 
in eight of 20 root canals using the probe assay but was not detected by 
culture (249). 

Other comparison studies did not include culture. A T. forsythia oligo-
nucleotide probe, complementary to single 16S rRNA sequence, demon-
strated good agreement with an immunofluorescence assay, suggesting 
similar sensitivities between the two assays for the detection of sub-
gingival species (61). The whole genomic checkerboard assay and poly-
merase chain reaction for T. forsythia gave similar detection frequencies 
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(197). Comparisons between end point and quantitative (real-time) 
polymerase chain reaction with an enzyme-linked immunosorbent as-
say indicated that the polymerase chain reaction assays were more sen-
sitive than enzyme-linked immunosorbent assay (192). 

Collectively these comparisons indicate that T. forsythia can be de-
tected reliably and sensitively in samples using non-cultural methods. 
Use of oligonucleotide probes and polymerase chain reaction- based 
studies has the advantage of being less susceptible to cross-reactivity 
than whole genomic probe assays. Sequence-based methods, oligonu-
cleotide probes and polymerase chain reaction have a further advantage 
in being able to assay cultured species and phylotypes for which there 
are currently no cultivated microorganisms, including Tannerella phy-
lotypes (Fig 1 and 2). 

Association with oral infections 

Association with periodontal infections 

Association with disease encompasses more frequent and/or higher lev-
els of suspected pathogen detection in disease compared with health, 
and species suppression (elimination) with resolution of symptoms (58, 
203). T. forsythia was first recognized from advanced periodontitis in 
subjects who had shown recent disease progression based on serial ra-
diographs (225). The association of T. forsythia with periodontitis, in-
cluding progressing (aggressive) periodontitis, has been observed in a 
number of studies from populations around the world (Table 1). Peri-
odontitis that progresses post-therapy, “refractory “ periodontitis, rep-
resents a particularly aggressive form of disease, which has also been as-
sociated with detection of T. forsythia (Table 1). Detection methods for 
the species include cultural, immunological, and genetic assays. 

T. forsythia has also been associated with early or initial periodontitis 
(Table 1). It had been hypothesized that one set of species might initiate 
gingivitis, after which other species would initiate periodontitis. Detec-
tion of periodontal pathogens in gingivitis and early periodontitis sug-
gests that similar species initiate both infections. T. forsythia has been 
associated with early stages of periodontal attachment loss by culture 
(231), immunofluorescence (142), and polymerase chain reaction (234). 
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We recently examined early stages of periodontal attachment loss com-
pared with periodontal health and compared the microbiota by poly-
merase chain reaction and 16S rRNAbased oligonucleotide probes (228). 
Detection of T. forsythia was associated with early periodontitis in a com-
parison of subgingival and tongue samples from healthy subjects and 
those with early periodontitis in this cross-sectional analysis (Fig. 4). 
Detection associated with bleeding on probing or attachment loss in ad-
olescents has also been recorded (84, 211), further suggesting an asso-
ciation with early periodontitis.  

Suppression of a pathogen with resolution of disease represents fur-
ther evidence for disease association. Studies that observed a reduction 
of T. forsythia associated with resolution of clinical symptoms of disease 
are summarized in Table 2. A range of therapies was used to achieve 
clinical improvement including scaling and root planing, local and/or 
systemic antibiotics, and periodontal surgery.   

Risk factors for periodontitis have also been linked with increased 
detection of T. forsythia. Detection of T. forsythia was associated with 

Fig. 4. Detection by PCR of Tannerella forsythia in 124 paired tongue and subgingival 
samples of 23 healthy (mean periodontal attachment level (AL) ≤1.5 mm, no sites >2 
mm AL loss), 59 early periodontitis 1 (mean AL ≤1.5 mm, ≥1 site more than 2 mm AL 
loss) and 42 early periodontitis 2 (mean AL >1.5 mm) subjects. T. forsythia was de-
tected more frequently subgingivally than from tongue samples (P = 0.001). T. for-
sythia in subgingival samples (P < 0.03) was associated with early periodontitis. Data 
derived from (228).   
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subjects who were smokers (46, 79, 112, 242, 267), positive for aspar-
tate aminotransferase activity (115), or interleukin-1 genotype (PST 
test) (206). Systemic disease is frequently associated with lowered re-
sistance to infection, including periodontal infections. T. forsythia was as-
sociated with viral diseases (200), subjects infected with HIV (66, 146), 
diabetes, (14), and Papillon–Lefe`vre syndrome (140, 173). 

Certain populations have an elevated risk of developing periodonti-
tis, which might reflect differences in the subgingival microbiota. In the 
UK, P. gingivalis was detected more frequently in Indo- Pakistani adoles-
cents compared with white-Caucasian and Afro-Caribbean adolescents 
(50). In Los Angeles (U.S.A.), P. gingivalis was also detected more fre-
quently in advanced periodontitis in Asian patients compared with Af-
rican-Americans and Caucasians, but the highest P. gingivalis detection 
frequencies were in Hispanic subjects, although these differences were 
not significant (237). In the same population, T. forsythia had similar de-
tection frequencies between groups, T. forsythia was detected in 100% 
of Hispanic advanced periodontitis subjects. Craig et al. (26) reported 
lower serum immunoglobulin G levels to T. forsythia in Hispanic subjects. 
In the latter study, the differences in periodontitis, microbiota and host 
response were considered to be related more to environmental and de-
mographic factors, including occupational status, than to race/ethnicity. 

While T. forsythia has been associated with periodontitis, it was also 
detected in gingival and subgingival plaque in periodontally healthy sub-
jects (63, 64). Detection in periodontal health may represent its presence 

Table 2. Studies linking suppression of T. forsythia post therapy with disease resolution 

Study  Bacterial identification method  Therapy type  Study design 

Haffajee et al. (1996)(80)  Whole genomic hybridization  Periodontal surgery, systemic tetracycline  Longitudinal 
Umeda et al. (1996)(239)  Cultivation IFA  Local minocycline  Longitudinal 
Haffajee et al. (1997)(76)  Whole genomic hybridization  Scaling, root planing (SRP)  Longitudinal 
Winkel et al. (1997)(256) Cultivation  SRP, systemic metronidazole  Longitudinal 
Winkel et al. (1998)(257)  Cultivation  Systemic amoxicillin and metronidazole  Longitudinal 
Takamatsu et al. (1999)(215)  DNA probe, PCR  SRP  Longitudinal 
Cugini et al. (2000)(27)  Whole genomic hybridization  SRP  Longitudinal 
Darby et al. (2001)(31)  PCR  SRP  Longitudinal 
De Soete et al. (2001)(34)  Whole genomic hybridization  SRP, chlorhexidine (whole mouth disinfection)  Longitudinal 
Feres et al. (2001)(52)  Whole genomic hybridization  Systemic amoxicillin or metronidazole  Longitudinal 
Van der Velden et al. (2003)(240)  Cultivation  SRP +/) surgery, antibiotics  Longitudinal 
Rodrigues et al. (2004)(171)  Cultivation, DNA probes  SRP, tetracycline (systemic or local)  Longitudinal 
Darby et al. (2005)(30)  PCR  SRP  Longitudinal   
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in a “carrier state”, which seems likely because levels are generally lower 
than those found in periodontal disease (Table 1). Furthermore, differ-
ent bio- or genotypes may have different relationships with health or 
disease. Different phylotypes of Tannerella were associated with peri-
odontal health compared with T. forsythia in periodontitis (123, 132). 
Detection of different genotypes, as determined by reverse transcription- 
polymerase chain reaction (138) or arbitrarily-primed-polymerase chain 
reaction (93), showed different disease associations. T. forsythia has also 
been detected in samples from the tongue, and was associated with hal-
itosis (219). In our studies of healthy and early periodontitis T. forsythia 
was detected more frequently subgingivally than from the tongue (Fig. 
4) (228), suggesting that the likely primary niche/habitat is subgingi-
val. This observation was similar to that of other periodontal species 
detected using oligonucleotide probes, but contrasted with P. gingiva-
lis which was associated with both tongue and subgingival sites (228). 

Association with endodontic and peri-implant oral infections 

T. forsythia is not exclusively associated with periodontal infections. 
Strains used in the taxonomy study originated from both periodontal 
and endodontic lesions. Taxonomic studies have looked at T. forsythia 
isolates from peri-apical infection (105) and from alveolar radiolucent 
lesions of endodontic origin (17). A number of other studies have iden-
tified T. forsythia from dental root canals by polymerase chain reaction 
(25, 55, 107, 176, 195), DNA probes (59, 198, 213), or microarray (DNA 
chip) (249). It was detected in periapical tissues using fluorescent in situ 
hybridization (FISH) (Fig. 5) (212). Subgingival T. forsythia is the likely 
source in endodontic pathology (176), and for infections around dental 
implants (129, 130, 243); T. forsythia was associated with peri-implan-
titis by culture (223) and by DNA probes (98). The microbiota of failing 
implants was similar to that of refractory periodontitis (133).  

Source of T. forsythia detection in children 

An early indication that T. forsythia might be detected in children and 
transmitted from parent to child came from data using the BANA-
based assay (183). T. forsythia was detected by polymerase chain re-
action from tube-fed children (18), Down syndrome children (4), and 
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children with periodontitis (159), but was found infrequently in med-
ically healthy children (118), also infrequently in children when using 
cultural detection (110, 111). It was detected using DNA probes in a 
population-based study of preschool children with a high prevalence 
of dental caries (227). In that population there were increased odds 
of species detection in the child if the child’s parent was also positive 
(227). In the children, T. forsythia detection was associated with gin-
gival bleeding, and a higher odds that T. forsythia would be detected if 
the mother had periodontitis (262). Polymerase chain reaction detec-
tion of T. forsythia in children was also linked to its detection in a par-
ent (160, 218, 238). These studies suggested that T. forsythia, like other 
periodontal pathogens, is endogenous and primary infection likely oc-
curs by vertical transmission. 

While T. forsythia was detected in health, and gingivitis, the species 
was detected more frequently associated with disease than health, in-
dicating, that in the oral cavity T. forsythia shows a defined association 
with periodontal, peri-implant, and endodontic pathology. 

Fig. 5. Visualization of Tannerella 
forsythia by FISH on tissue sections 
from a periapical endodontic lesion. 
Simultaneous hybridization was 
performed with the bacteria-specific 
probe EUB 338-FTIC (green), and the 
species-specific probe T. forsythia-Cy3 
(orange) (212). Reprinted with the 
permission of the Society for General 
Microbiology.   
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Cell and tissue invasion in humans 

T. forsythia has been detected in host tissues; it was detected on or in cre-
vicular epithelial cells from healthy and periodontally diseased patients 
(37) by DNA probes. The penetration of T. forsythia within the different 
layers of tissue has been shown by microscopy (177, 212). The progress 
made using FISH microscopy-based technology enables investigators to 
observe a fragment of tissue and selectively detect one or more organ-
isms. Using a probe specific to one organism, or a probe that is univer-
sal to bacteria, the load and distribution of the organism within the sam-
ple can be observed. Such techniques have been applied successfully to 
periodontal tissues (174, 254), and to periapical lesions (Fig. 5) (212). 

Localization of T. forsythia within buccal epithelial cells from sub-
jects has been recently described using FISH (175). Surprisingly, the cells 
were neither monoinfected, nor were T. forsythia, P. gingivalis or Acti-
nobacillus actinomycetemcomitans, the major invading bacteria. Other 
tissue-invading cells were species of Streptococcus (175). This finding 
suggests that a wide range of species may invade host cells, perhaps pro-
viding a strategy for bacterial persistence. 

The increasing association of systemic disease with periodontal in-
fection led to periodontal species being sought in extra-oral host tissues, 
mainly using polymerase chain reaction-based methods. Polymerase 
chain reaction was used to identify T. forsythia in atheromatous plaques 
(85), in coronary stenotic artery plaques (101), in atherosclerotic vessels 
(54), and in occluded arteries of patients with Buerger disease (103). T. 
forsythia was also detected in the bronchial tissues of embalmed cadav-
ers (259). Future study will clarify whether this periodontal species is 
contributing to the pathology in these clinical conditions. 

T. forsythia in animal models of infection 

Mono- and mixed infections with T. forsythia in animal models provide 
an opportunity to examine the cooperative and competitive components 
of polymicrobial oral infections. Several animal models have been used 
to study the pathogenic potential of T. forsythia in periodontal and end-
odontic infections. As a mono-infection, T. forsythia was among the spe-
cies, including P. gingivalis and F. nucleatum, that induced alveolar bone 
loss in gnotobiotic rat infections (220). Rabbits and mice were used to 
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test its pathogenicity in a subcutaneous abscess model (10, 216). More 
recently more technically challenging models of mouse gingival tissue 
(1, 7, 190), and endodontic infections have been used to mimic oral chal-
lenges and outcomes (8, 56, 185). 

Mono- and mixed infections of T. forsythia, P. gingivalis, and F. nuclea-
tum were tested in a wound chamber model in rabbits (216). While there 
was no abscess formation in mono-infections involving individual spe-
cies, infection by T. forsythia plus P. gingivalis resulted in abscess forma-
tion in all tested animals, whereas T. forsythia and F. nucleatum mixed 
infections resulted in abscesses in 75% of the tested animals. The syn-
ergistic effect of T. forsythia and P. gingivalis was also observed in mice 
(265). These results indicated that the ability of T. forsythia to invade 
tissues is not only dependent on the characteristics of the strain (spe-
cies) used but may result from interspecies interactions. A periodontal 
challenge of P. gingivalis, B. fragilis, B. vulgatus, P. intermedia, and T. for-
sythia resulted in alveolar bone loss and exposure of molar tooth roots 
(1). Using a mouse model for endodontic infection it has been shown 
that a mixed infection of P. gingivalis, T. denticola, and T. forsythia in-
duced periapical bone loss (56). 

From association with infection to the definition of a pathogen 

Both clinical studies in humans, and animal model studies, associate T. 
forsythia with disease. Designating a bacterial species as a pathogen in-
cludes associating the species with disease and associating the species 
with pathogenicity-related factors that include host response, virulence 
factors, and molecular signatures (58, 170). 

Determination of the cell components thought to be important in 
pathogenicity starts with identification of their effects on the host. Both 
the cell biology of T. forsythia and its effect on the host are still largely 
unknown. Three areas of research are underway: 

• understanding the components of T. forsythia cell biology that are 
needed for a population to settle in a niche, which may also 
have deleterious effects on the host. 

• identifying strategies of biofilm formation and maintenance. 
• understanding the host–bacteria cross-talk that forms the basis of 

health, disease, and healing. 
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These three areas of research provide opportunities to intervene in 
disease-associated colonization and persistence. Not all of these com-
ponents are considered traditional pathogenic factors, but they contrib-
ute to successful colonization and loss of biofilm control by the host. The 
availability of the genome sequence, a nascent genetic system, and ani-
mal models, provide tools to evaluate and define the pathogenic poten-
tial of a species, and create opportunities to experiment with new treat-
ment strategies. 

Genome sequence of T. forsythia 

The full genome of T. forsythia type strain, ATCC 43037, has been se-
quenced. The strain was provided by F.E. Dewhirst and M.F.J. Maiden of 
The Forsyth Institute. The cloning, sequencing, and assembly of the ge-
netic sequence were performed by Steven Gill and colleagues at the TIGR 
Institute. The primary annotation and web-site presentation are avail-
able through the Oral Pathogen Sequence Databases at Los Alamos Na-
tional Laboratory Bioscience Division (http://www.oralgen.lanl.gov ). 
The dynamic annotation compiling all available genetic sources is avail-
able through the Bioinformatics Resource for Oral Pathogens at The For-
syth Institute (http://www.brop.org ) (19). 

The genome contains 3,405,543 base pairs, and 3,034 predicted open 
reading frames. The GC content is 46.8%. Two 16S rRNA sequences are 
present in the genome. Phage and transposons are encoded within the 
genome but their function has not yet been investigated. Fifteen genomic 
(pathogenicity) islands were detected, including the Bacteroides conju-
gative transposon-related island, tra gene cluster (http://www.oralgen.
lanl.gov). The tra genes are organized in the same order in P. gingiva-
lis and P. intermedia. A detailed analysis of the genome sequence will be 
provided with the release of the primary publication. 

Information from the genome sequence of a pathogen can expand the 
study of a specific species through new technologies and by comparing 
genetic potential with other organisms. Data from genome sequences 
facilitate the investigation of critical events in the cell biology, the in-
fectious process, and dialog between host and pathogen, or between 
microorganisms. The major goal of genome-enabled infectious disease 
research is the development of novel diagnostics and therapeutic strat-
egies, both requiring a deeper understanding of the genetic makeup of 
the organism and the host, and the organism’s expression potential (57). 

http://www.oralgen.lanl.gov
http://www.brop.org
http://www.oralgen.lanl.gov
http://www.oralgen.lanl.gov
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A genetic system in its infancy 

Only one group so far has successfully created a T. forsythia strain with 
a genetically altered gene (92). Honma et al. (92) used a suicide plas-
mid and a triparental conjugation. The suicide plasmid was constructed 
in an Escherichia coli replicating plasmid that cannot replicate in T. for-
sythia, containing bspA (targeted gene for the genetic interruption) and 
tet(Q) for tetracycline antibiotic selection. Genetic exchange was enabled 
by E. coli RK231, supplying the conjugal transfer function, between the 
E. coli strain carrying the suicide plasmid and T. forsythia ATCC 43037. 
The resulting clone contained a bspA gene interrupted by the insertion 
of the full plasmid (92). New, more efficient methodologies for genetic 
engineering may arise from analyzing the genome sequence. No func-
tional reporter gene has been published but it is suggested that Bacte-
roides reporter genes may be of use. 

T. forsythia cell biology: the foundation for population survival 
and expansion 

Integral components of pathogenicity frequently have their origin in bac-
terial cell physiology. Understanding the bacteria–host interactions that 
are important in pathogenicity start, for example, from knowing which 
proteases facilitate bacterial nutritional requirements while enhancing 
tissue destruction (178). 

Molecular-method-based data complement information obtained 
from biochemical characterization. Functional characterization with-
out gene identification, and vice versa, however, can provide only a weak 
understanding of the cell’s potential and/or its activity in the environ-
ment where challenges lie. To understand the complexity of the host–
pathogen relationships, we need to move beyond the study of isolated 
individual biological components (genes, proteins, etc.) to study how 
the individual components cooperate. This integrative knowledge in-
volves a functional study of cell components, a genomewide understand-
ing of cell functions, their relationships, and the effects of products and 
by-products on their environment. This may be related to the same or-
ganism (quorum sensing, attachment to human cell, methylglyoxal tox-
icity, etc.), another member of the biofilm (growth stimulation, bacte-
riotoxin production, genetic exchange mediating antibiotic resistance, 
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etc.), or the host (innate immune response stimulation, inflammation, 
bone resorption, etc.). 

Several genes of T. forsythia were sequenced before the full genome 
was sequenced. These T. forsythia genes included: the sialidase siaHI 
(102), the superoxide dismutase sodF (97), an α-d-glucosidase (97), an 
N-acetyl-β-glucosaminidase (97) the outer membrane RagA-like gene 
(97), groEL (169), prtH protease with hemolysin activity (178), bspA 
(191), susB (97), a formate channel (A. Nagai and N. Itoh, GenBank de-
posit, unpublished data), EF-Tu (A. Nagai and N. Itoh, Genbank deposit, 
unpublished data), and an unusual sigma factor common to the mem-
bers of the Bacteroidetes phylum (252). 

Binding of pathogens to tissues can be mediated through fibronec-
tin binding activity. Binding of T. forsythia cells to immobilized fibronec-
tin and fibrinogen was decreased in fibronectin- and fibrinogen-coated 
microtiter plates in a bspA genetically engineered strain that did not 
express BspA (92). Purified recombinant BspA protein competes with 
binding of a T. forsythia wild-type strain to fibronectin and fibrinogen 
on fibronectin- and fibrinogen-coated microtiter plates (191). BspA is 
immunogenic in patients with periodontitis (191). The BspA protein 
belongs in the leucine-rich repeat (LRR) protein family. The amino acid 
sequence includes leucine-rich repeat motifs, which is a versatile pro-
tein-binding motif. Most proteins belonging to the LRR family interact 
via protein– protein interaction in a receptor–ligand context (108, 120). 
Methylglyoxal is a pathogenic mediator produced by T. forsythia; a by-
product of metabolism, it has cytotoxic effects on bacteria and host (116, 
144). It is principally associated with the glycolytic pathway and allows 
the cell to control the rate of carbon efflux (53). Methylglyoxal accumu-
lates in cultures of a variety of microorganisms, and in human tissues 
and it reacts with proteins to form advanced glycation end products toxic 
for bacterium and host. In response, organisms frequently use multiple 
defensive metabolic mechanisms for detoxifying methylglyoxal (109). In 
the gingival crevicular fluid methylglyoxal was detected at higher con-
centrations in subjects with periodontal disease than in healthy subjects 
(116). The contribution of inflamed tissue to the total amount of methyl-
glyoxal is unclear. This reactive compound may contribute significantly 
to tissue damage in periodontal disease. 

The enzymatic activities of T. forsythia include a trypsin-like prote-
ase (71) source of the BANA test, a β-lactamase (246), as well as phos-
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phatase, peptidase, sugar-degradation, and lipase used for identifica-
tion (145, 179, 230, 232). 

T. forsythia biofilm formation and maintenance 

T. forsythia is a component of the biofilms found in the oral cavity. The 
dynamics of biofilm formation in oral infections is complex in both struc-
ture and composition over time. There are interactions between species, 
competition between species, in addition to host influences on biofilm 
organization. These interactions may differ during disease progression, 
persistence or remission. The spatial bacterial organization within den-
tal plaque in vivo may result from co-aggregation-dependent growth 
stimulation between pairs of organisms in the biofilm (162). Co-adher-
ence between species and species-tospecies communication may also be 
key components for biofilm organization, helping or establishing spa-
tiotemporal development (48, 121). Understanding and elucidating the 
dynamics of biofilm composition and structure is an incremental pro-
cess. Analysis of mono-species and two-species biofilms facilitates un-
derstanding the intricate communication and interrelationships of poly-
microbial biofilms involved in oral health and diseases. 

T. forsythia can form biofilms in vitro with F. nucleatum (190). The 
thickness and structure of T. forsythia biofilms is influenced by F. nuclea-
tum. Both species co-aggregate when in a planktonic form (190), and this 
interspecies binding appears to be critical in the formation and struc-
ture of T. forsythia– F. nucleatum biofilms, and favors T. forsythia growth 
(190). This type of interaction was not observed for the biofilms formed 
by T. denticola with P. gingivalis (248) and by Streptococcus oralis with 
Actinomyces naeslundii (162). Could the T. forsythia–F. nucleatum inter-
action facilitate intergenic exchange? This question, of interest for all 
oral organisms, can be addressed by analysis of both available genomes 
followed by experimental exchange of DNA. 

Both F. nucleatum and T. denticola can bind to T. forsythia (99). Co-ag-
gregation between T. forsythia and T. denticola is influenced by two LRR 
proteins, BspA and LrrA, for T. forsythia and T. denticola, respectively 
(99). In vitro binding assay between the two proteins, BspA and LrrA, 
expressed and purified as recombinant full and truncated forms, shows 
that the N-terminal region of LrrA, but not the LRR domain, is involved 
in the binding process (99). Other surfaceexposed proteins may also be 
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involved in cell-to-cell attachment; T. forsythia bspA is regulated by con-
tact when forming a biofilm with F. nucleatum (100). Decrease of bspA 
transcription compared with planktonic cultures occurs while T. for-
sythia is forming a biofilm by itself, or with F. nucleatum (100). 

Host response to T. forsythia 

Animal models and in vitro cell culture models reveal the aggressiveness 
of T. forsythia in infection, and host–bacteria interactions. The immune 
response to T. forsythia was examined using a mouse abscess model. Live 
and non-viable T. forsythia cells were injected subcutaneously in the dor-
sum on the mouse. The mice developed lesions consisting of granulo-
matous tissue with a large central core. There was primarily an innate 
immune response, neutrophils being the dominant leukocyte 1 day af-
ter injection (69). Consequently, there was no evasion of the innate host 
defense mechanism, unlike for P. gingivalis (69). The immune reaction 
was greater with larger skin lesions using live T. forsythia compared to 
non-viable organisms (69). Cell culture in vitro analysis of host–bacteria 
interactions allows investigation of mechanistic components of health, 
disease or the healing process. The inflammatory response of a macro-
phage/ epithelial cell co-culture to mono- and mixed infection with P. 
gingivalis, T. denticola, and T. forsythia was recently investigated (11). 
The 1:5 ratio of macrophage: epithelial cells was chosen to represent 
an inflamed periodontium. In this model P. gingivalis, T. denticola, and T. 
forsythia stimulated the secretion of pro-inflammatory cytokines (inter-
leukin- 1b, interleukin-6), chemokines (interleukin-8, RANTES), prosta-
glandin E2, and matrix metalloproteinase- 9. These oral pathogens have 
strong potential for activating host-mediated destructive processes. No 
synergistic effect was observed for cytokine, chemokine, prostaglan-
din E2, and matrix metalloproteinase-9 production between mixed and 
mono-infections (11). 

Cell apoptosis induced by T. forsythia was first demonstrated using a 
whole cell extract (5), and later using a T. forsythia lipoprotein fraction 
obtained by Triton X-114 phase separation (87). The same lipoprotein 
fraction also induced dose-dependent IL-6 production by gingival fibro-
blasts and an epithelial cell line (87). The indirect effect of lipoproteins 
on disease progression has been hypothesized (87). Under this hypothe-
sis, the membrane fraction containing lipoproteins of T. forsythia induced 
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pro-inflammatory cytokines from gingival fibroblasts, monocytes, and 
macrophages, resulting in periodontal tissue destruction, bone resorp-
tion, and release of enzymes that degraded the extracellular matrix. Ac-
cumulation of the membrane fraction of T. forsythia in inflamed areas 
could then kill epithelial cells and gingival fibroblasts through apopto-
sis. Other oral organisms use similar strategies, or produce factors that 
lead to cell apoptosis (5, 86). 

An external serrated S-layer is easily distinguishable in stained cell 
cross-sections observed by electron microscopy (Fig. 3) (155, 177, 232). 
This S-layer structure is the first cell ultrastructure encountered by the 
environment and the host. S-layer proteins are immunogens in periodon-
titis patients (177). The S-layer also mediates hemagglutination, which is 
inhibited by N-acetylglucosamine, and heat denaturation of the proteins. 
Polyclonal antibodies directed towards the S-layer also inhibit hemag-
glutination, as well as cell adherence and cell penetration into KB-cell 
lines (cell lines derived from epidermal carcinoma of the mouth) (177). 
Pre-immunization of mice with S-layer protected these animals against 
abscess formation after challenge with live T. forsythia cells (177). The 
nature of the hemagglutinin is still unknown. At least one hemaggluti-
nin was inhibited by N-acetylneuraminyllactose (158), and this/these 
proteins may differ from the 200/210-kDa protein described by Sabet 
et al. (177). Progress will be made by exploring relationships between 
gene, protein, and antigens to understand the organism’s relationships 
with its environment. 

The immune response to T. forsythia may have implications for an-
other oral pathogen. Both P. gingivalis and T. forsythia were found to 
share common antigens providing some level of immune protection 
(247). This reactivity was observed when the primate Macaca fascicu-
laris was vaccinated with killed P. gingivalis, or when New Zealand White 
rabbits were immunized with P. gingivalis or T. forsythia. This cross-re-
activity, however, was not observed with A. actinomycetemcomitans. An-
tibodies to shared lipopolysaccharide epitopes among oral pathogens 
or members of the oral microbiota may account, in part, for the im-
mune protection observed in immunized monkeys (247). A direct con-
sequence of this crossreactivity could lead to modulation of the dura-
tion and intensity of infection. If the patient was already challenged by a 
particular pathogen, when another species infects that shares common 
epitopes, the progress of the population invasion and maintenance may 
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be significantly altered. This may account for some of the variation ob-
served in host susceptibility to periodontal diseases. Additional popu-
lation variation in periodontitis and caries susceptibility was attributed 
to genetic factors, based on studies in twins (13, 147). 

Summary, perspective and future opportunities 

In this review, we have described T. forsythia from the perspective of the 
microbiologist, and its associations with periodontal and other oral in-
fections. To assess pathogenic potential one needs to go further than as-
sociation with disease. One needs to associate pathogenic mechanisms 
and mediators with host response. The availability of the full genome 
sequence data for a strain of T. forsythia isolated from a progressing le-
sion of advanced periodontitis opens new horizons for our understand-
ing of Tannerella sp.–Tannerella sp., Tannerella sp.–microbiome, and Tan-
nerella sp.–host interactions. New technologies are becoming available 
to study this species and others in the genus, which will provide new 
insights into the cell biology of the bacteria and the host. The quantum 
leap provided by a full genome will greatly enhance the analytic power of 
proteomics, transposomics, genomics, and bioinformatics to be applied 
to this species. While the first steps will appear mainly to benefit basic 
science, translation researchers and clinicians will subsequently be able 
to incorporate those findings to improve care and disease prevention. 
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