405 research outputs found

    A Real-Time Ball Detection Approach Using Convolutional Neural Networks

    Get PDF
    Ball detection is one of the most important tasks in the context of soccer-playing robots. The ball is a small moving object which can be blurred and occluded in many situations. Several neural network based methods with different architectures are proposed to deal with the ball detection. However, they are either neglecting to consider the computationally low resources of humanoid robots or highly depend on manually-tuned heuristic methods to extract the ball candidates. In this paper, we propose a new ball detection method for low-cost humanoid robots that can detect most soccer balls with a high accuracy rate of up to 97.17%. The proposed method is divided into two steps. First, some coarse regions that may contain a full ball are extracted using an iterative method employing an efficient integral image based feature. Then they are fed to a light-weight convolutional neural network to finalize the bounding box of a ball. We have evaluated the proposed approach using a comprehensive dataset and the experimental results show the efficiency of our method

    Nonequilibrium relaxation and scaling properties of the two-dimensional Coulomb glass in the aging regime

    Full text link
    We employ Monte Carlo simulations to investigate the two-time density autocorrelation function for the two-dimensional Coulomb glass. We find that the nonequilibrium relaxation properties of this highly correlated disordered system can be described by a full aging scaling ansatz. The scaling exponents are non-universal, and depend on temperature and charge density.Comment: 6 pages, 3 figures included; revised version: corrected exponents, and some additional explanations and references added; to appear in EP

    A new urban landscape in East–Southeast Asia, 2000–2010

    No full text
    East–Southeast Asia is currently one of the fastest urbanizing regions in the world, with countries such as China climbing from 20 to 50% urbanized in just a few decades. By 2050, these countries are projected to add 1 billion people, with 90% of that growth occurring in cities. This population shift parallels an equally astounding amount of built-up land expansion. However, spatially-and temporally-detailed information on regional-scale changes in urban land or population distribution do not exist; previous efforts have been either sample-based, focused on one country, or drawn conclusions from datasets with substantial temporal/spatial mismatch and variability in urban definitions. Using consistent methodology, satellite imagery and census data for >1000 agglomerations in the East–Southeast Asian region, we show that urban land increased >22% between 2000 and 2010 (from 155 000 to 189 000 km2), an amount equivalent to the area of Taiwan, while urban populations climbed >31% (from 738 to 969 million). Although urban land expanded at unprecedented rates, urban populations grew more rapidly, resulting in increasing densities for the majority of urban agglomerations, including those in both more developed (Japan, South Korea) and industrializing nations (China, Vietnam, Indonesia). This result contrasts previous sample-based studies, which conclude that cities are universally declining in density. The patterns and rates of change uncovered by these datasets provide a unique record of the massive urban transition currently underway in East–Southeast Asia that is impacting local-regional climate, pollution levels, water quality/availability, arable land, as well as the livelihoods and vulnerability of populations in the regio

    Cryo-electron tomography of biological specimens

    Get PDF
    Cryo-electron tomography (CET) is an imaging technique capable of visualizing the three-dimensional (3-D) structure of complex viruses, cells, and tissues in hydrated state. With the current resolution of 4-5 nm, CET can resolve supramolecular complexes that are responsible for many cellular functions. This paper discusses the important considerations in CET of biological specimens and identify areas where digital signal processing can make a decisive contribution. Topics discussed include the principles of electron tomography and CET, image background and feature contrasts in CET, acquisition and alignment of projection images, reconstruction of the image volume, denoising and segmentation of tomograms, and feature recognition in cellular tomograms

    High-Resolution Copy-Number Variation Map Reflects Human Olfactory Receptor Diversity and Evolution

    Get PDF
    Olfactory receptors (ORs), which are involved in odorant recognition, form the largest mammalian protein superfamily. The genomic content of OR genes is considerably reduced in humans, as reflected by the relatively small repertoire size and the high fraction (∼55%) of human pseudogenes. Since several recent low-resolution surveys suggested that OR genomic loci are frequently affected by copy-number variants (CNVs), we hypothesized that CNVs may play an important role in the evolution of the human olfactory repertoire. We used high-resolution oligonucleotide tiling microarrays to detect CNVs across 851 OR gene and pseudogene loci. Examining genomic DNA from 25 individuals with ancestry from three populations, we identified 93 OR gene loci and 151 pseudogene loci affected by CNVs, generating a mosaic of OR dosages across persons. Our data suggest that ∼50% of the CNVs involve more than one OR, with the largest CNV spanning 11 loci. In contrast to earlier reports, we observe that CNVs are more frequent among OR pseudogenes than among intact genes, presumably due to both selective constraints and CNV formation biases. Furthermore, our results show an enrichment of CNVs among ORs with a close human paralog or lacking a one-to-one ortholog in chimpanzee. Interestingly, among the latter we observed an enrichment in CNV losses over gains, a finding potentially related to the known diminution of the human OR repertoire. Quantitative PCR experiments performed for 122 sampled ORs agreed well with the microarray results and uncovered 23 additional CNVs. Importantly, these experiments allowed us to uncover nine common deletion alleles that affect 15 OR genes and five pseudogenes. Comparison to the chimpanzee reference genome revealed that all of the deletion alleles are human derived, therefore indicating a profound effect of human-specific deletions on the individual OR gene content. Furthermore, these deletion alleles may be used in future genetic association studies of olfactory inter-individual differences

    Simplified RNA secondary structure mapping by automation of SHAPE data analysis

    Get PDF
    SHAPE (Selective 2′-hydroxyl acylation analysed by primer extension) technology has emerged as one of the leading methods of determining RNA secondary structure at the nucleotide level. A significant bottleneck in using SHAPE is the complex and time-consuming data processing that is required. We present here a modified data collection method and a series of algorithms, embodied in a program entitled Fast Analysis of SHAPE traces (FAST), which significantly reduces processing time. We have used this method to resolve the secondary structure of the first ∼900 nt of the hepatitis C virus (HCV) genome, including the entire core gene. We have also demonstrated the ability of SHAPE/FAST to detect the binding of a small molecule inhibitor to the HCV internal ribosomal entry site (IRES). In conclusion, FAST allows for high-throughput data processing to match the current high-throughput generation of data possible with SHAPE, reducing the barrier to determining the structure of RNAs of interest

    On the violation of the Fermi-liquid picture in two-dimensional systems owing to the Van-Hove singularities

    Full text link
    We consider the two-dimensional t-t' Hubbard model with the Fermi level being close to the van Hove singularities. The phase diagram of the model is discussed. In a broad energy region the self-energy at the singularity points has a nearly-linear energy dependence. The corresponding correction to the density of states is proportional to ln^3(e). Both real- and imaginary part of the self-energy increase near the quantum phase transition into magnetically ordered or superconducting phase which implies violation of the Fermi-liquid behavior. The application of the results to cuprates is discussed.Comment: 16 pages, RevTeX, 5 figures; The errors of the published version (PRB 64, 205105, 2001) are correcte
    corecore