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Abstract. Ball detection is one of the most important tasks in the context of 

soccer-playing robots. The ball is a small moving object which can be blurred 

and occluded in many situations. Several neural network based methods with 

different architectures are proposed to deal with the ball detection. However, 

they are either neglecting to consider the computationally low resources of hu-

manoid robots or highly depend on manually-tuned heuristic methods to extract 

the ball candidates. In this paper, we propose a new ball detection method for 

low-cost humanoid robots that can detect most soccer balls with a high accura-

cy rate of up to 97.17%. The proposed method is divided into two steps. First, 

some coarse regions that may contain a full ball are extracted using an iterative 

method employing an efficient integral image based feature. Then they are fed 

to a light-weight convolutional neural network to finalize the bounding box of a 

ball. We have evaluated the proposed approach using a comprehensive dataset 

and the experimental results show the efficiency of our method. 

Keywords: Ball Detection, Convolutional Neural Networks, Humanoid Robot, 

RoboCup. 

1 Introduction 

Object detection is the task of classifying meaningful and semantic regions followed 

by precisely estimating the location of objects in an image [1]. It plays a crucial role 

in establishing the world model of a soccer-playing robot. One of the most important 

objects that every soccer-playing robot have to detect is the ball. It is a small moving 

object that in many situations is occluded by playing robots in the field. Also, ball 

detection is affected adversely by image blurring caused due to unstable walking of 

low-cost humanoid robots and slow shutter speed cameras mounted on them. The 

difficulty of ball detection increases, even more, when the standard size FIFA ball 

comes with a different pattern in every competition.  

With the development of deep neural networks (DNNs), state-of-the-art methods 

have scored high accuracy in object detection [2, 3]. However, these methods are 

considered as real-time only by using dedicated graphic processing units (GPUs). In 
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RoboCup 2018, most of the qualified teams in humanoid soccer leagues have used 

only a CPU for all kind of tasks, including object detection, walking, world modeling, 

and behavior analysis. So implementing the DNN-based methods are not feasible on 

most soccer-playing humanoid robots. Recently several studies have been accom-

plished to adopt the DNNs for object detection, particularly ball detection on compu-

tationally low powered systems. These studies can be divided into two different ap-

proaches: single-stage detectors and candidate-based classifiers. Single-stage detec-

tors process a full-sized image using a DNN to localize the position of the interested 

objects. These methods either lacked a real-time performance on a CPU or missed 

generalization performance on a real robot. On the other hand, candidate-based classi-

fiers first extract ball candidates precisely and then each candidate is classified as a 

ball or background class separately. Although these approaches achieved some 

accurate results on low powered systems, they have highly relied on some manually-

tuned heuristic methods to extract the candidates of a specific ball type.  

In this paper, we propose a new ball detection method which achieves highly 

accurate results on a real robot, equipped only with a CPU in real-time performance. 

The method is described in two steps. In the first step, we find some coarse regions 

that may contain a ball. In the second step, these regions are fed into a convolutional 

neural network (CNN) to estimate the bounding box of the ball. The main 

contributions of this paper are: (i) proposing an iterative algorithm to find regions that 

probably contain a full ball using an efficient and novel feature extraction technique 

that is applicable for most soccer balls. (ii) introducing a light-weight CNN that 

localizes and classifies a ball within the candidate regions of interest. This network 

can inference the input in real-time on a computationally low powered system. 

The rest of the paper is organized as follows: in section 2 we review and 

investigate recently proposed ball detection methods. Our ball regions detector is 

presented in section 3. Designing and training the proposed CNN are described in 

section 4. In section 5 we provide experimental results and then conclude in section 6. 

2 Related works 

As stated ball detection approaches in the context of humanoid soccer-playing ro-

bots are divided into two groups: single-stage detectors and multi-stage candidate-

based classifiers. 

Single-stage detectors. In [4] a CNN is presented that employs a full-sized ݉ ൈ ݊ 

raw image to predict the center of the balls. It produces two ݉ and ݊-dimensional 

vectors as output. These vectors are discrete distributions and indicate the probability 

that each row and column of the image hold the center coordinates of the ball. To let 

the network converge more quickly, they provided more solutions by using two nor-

mal distributions as the label. The major drawback of their network is the expensive 

inferencing that takes about one second to complete for each image. Moreover, there 

is no guarantee that the network produces two unimodal distributions. So the output 

must be post-processed to find the most promising row and column that show the 
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center location of the ball. A fully convolutional neural network is proposed in [5] 

that can localize ݊ objects simultaneously in an image. It uses an encoder-decoder 

design to produce ݊ heat maps. Each heat map is a two dimensinal probability distri-

bution that should be maximized at the interested location of an object belonged to a 

specific class. The proposed network has a real-time performance on a powerful GPU. 

Also, the network does not predict the boundary of objects. Another similar approach 

for ball detection is presented in [6]. The output of the network is a heat map that 

shows high values for ball pixels while contains near zero values for non-ball pixels. 

It achieved near real-time performance on a modern CPU without processing other 

tasks of the robot. In [7] a more efficient encoder-decoder architecture is proposed 

that maps an input image into a full-resolution pixelwise classification. To decrease 

the computation load they have used depthwise separable convolutions and removed 

skip connections. Although, this network achieved some good results in near real-time 

performance on a low-power processor, it trained and evaluated on a limited data set 

that contains only one ball type. A real-time CNN-based object detection approach for 

resource-constrained robotics is presented in [8]. Before feeding the input image to 

the network, it transforms the image using the object geometry to form a Visual 

Mesh. This mesh has a constant sample density for the object in different distances 

and it significantly reduces the computational complexity. To train the network a 

semi-synthetic data set is used. The data set is generated using 360 degree high dy-

namic range images and physics-based rendering. The proposed approach reported 

consistent and accurate precision and recall over all data set. However, the generaliza-

tion performance of the method in a real robot is not evaluated. 

Candidate-based classifiers. In [9] candidates are white blobs that satisfy expected 

color histogram, shape, and size of the target ball. For each candidate, a Histogram of 

Gradients feature is calculated and then classified by a cascade AdaBoost [10] meth-

od. The training time of this classifier was about 10 hours that is an issue for on-site 

training during the competitions. Recently several neural network based classifiers are 

presented for classic ball detection in standard platform league [11-13]. In [11] ball 

candidates are examined using black pentagons of the ball. The topology and configu-

rations of the proposed network are optimized using a genetic algorithm. A more 

general candidate generation is suggested by [12]. For each interested pixel, a Differ-

ence of Gaussian filter with a kernel size that is proportional to the expected ball radi-

us at the location of the pixel is applied. Then highly responded blobs are fed to a 

cascade of two CNNs that the first one reduces the number of proposals to five and 

the second one performs accurate classification. In [14] authors presented a simple 

and fast method to find the candidates. They divide the input image into a grid and 

then if the number of white pixels in each cell exceeds a threshold, it is considered as 

a ball candidate. They have investigated two CNNs for classification of the candi-

dates. To accelerate the learning process they employed pre-trained networks and 

only retrained last layers for ball classification. Using a fixed grid for the whole image 

can lead to a candidate that either covers a portion of the ball or contains a small ball. 
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Fig. 1. (a) A template used to calculate importance weight of a particle in the ball proposed 

region detection algorithm. Inside region of the ball is approximated by the white box and 

outside region of the ball is illustrated by gray region. (b) and (c) show two feature maps and 

anchor boxes (dashed boxes). 

3 Ball regions proposal 

The main goal of our region proposal algorithm is to find some bounding boxes, most 

likely containing a full ball in the image window. Thanks to the accurate localization 

of our network introduced in the next section, we have no concern in fitting a region 

to the boundary of the ball. Our method is partially influenced by a simple ball detec-

tion method introduced in [15]. In contrast, we have proposed an iterative method that 

quickly converges to some region of interests using an easy to implement and effi-

cient to compute feature. This method requires to analyse the white and green mask of 

the image. In this work, we have used a learned lookup table to extract these two 

masks. However, to create a white mask we can use a thresholding method on the 

brightness channel. Also, the green mask could be generated by activating pixels fall 

into a predefined range on the hue channel [16]. 

Our approach is presented in Algorithm 1. In line 1 we initialize ݊ particles ran-

domly at locations labeled as white. To accelerate converging and reduce the false 

regions, we have considered only white pixels located in a given distance (approxi-

mately eight meters). Each particle ࢞ ൌ ሾܿݔǡ ǡݕܿ ǡݎ -ሿ is a vector representing the paݓ

rameters of a circle. The scalar ݎ is the roughly estimated radius of a ball located at 

coordinates ሺܿݔǡ -ሻ of the image. It can be derived using the camera matrix. An imݕܿ

portance weight ݓ is assigned to each particle that shows the likelihood of a ball.  To 

estimate this weight we used a simple feature that can be computed efficiently. Con-

sidering a soccer ball on the playing field, we expect significant white pixels inside 

the ball (approximated by ܴ௜௡ in Fig. 1 a). On the other hand, the region outside of the 

ball (approximated by ܴ௢௨௧ in Fig. 1 a) should contains non-white pixels, especially 

green pixels. Following this feature analysis, we compute the weight of each particle 

in line 4 to 8. The function ݊௖ሺܴሻ calculates the number of pixels having color ܿ in-

side the region ܴ. This can be calculated efficiently considering a rectangular area 

around ܴ using the integral image [17, 18]. Also, ͳሺ݁ݎ݌ݔሻ returns ͳ if ݁ݎ݌ݔ interpret-

ed as ݁ݑݎݐ otherwise returns 0. The particles are converged through line 2 to 11. Each 

particle is replicated with a probability proportional to its weight in a resampling 

r
Rin

Rout

(a) Ball template (b) 2×2 feature map (c) 1×1 feature map 
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phase (line 10). In this phase, also every replicated particle is randomly translated and 

scaled to explore the neighborhood. Moreover, this random transformation makes 

finding candidates less sensitive to an accurate camera matrix. We repeat the 

weighting and resampling process until particles converge to some regions that may 

contain a ball. To reduce the number of particles we only keep the candidates with an 

importance weight exceeding a threshold (line 12). Then particles are clustered using 

an approach similar to non-maximum suppression. In contrast, we take an average of 

non-maximums to generate a cluster instead of suppressing them. This clustering 

method has a time complexity of ܱሺ݊ଶሻǤ When the number of particles is large, a 

clustering algorithm with linear time complexity can be used in our method [19]. 

Since we have used a simple feature, it is likely that in some cases we miss the whole 

ball region; therefore, during the clustering phase, we increase the scale of the bound-

ing box of each candidate, by a factor of two. To limit the maximum number of final 

regions we select ݇ clusters that maximize the average importance weights (line 14). 

4 Network Design and Training Phase 

4.1 Design Phase 

Here we propose a deep CNN architecture for ball detection, applicable in the region 

of interests, obtained in the previous step. To design the network we considered two 

main goals. Firstly, the network has to be fast in an embedded system with low com-

putational resources. Secondly, it must be able to detect balls with different scales at a 

high precision rate. To achieve this network we inspired by the single shot multi-box 

detector (SSD) [2] and MobileNets [20] networks. SSD is an object detection network 

that uses some auxiliary multi-scales feature maps to detect objects at different sizes. 

Algorithm 1: Ball Regions Detection 

1: ȱ ൌ Draw ሼݔ௜ሽ௜ୀଵ௡  from white mask; 

2: for ݅ݐݐ ൌ  ͳ ݋ݐ ݉ do 

3:  for ݅ ൌ  ͳ ݋ݐ ݊ do 

4:   ܴ௜௡ ൌ region inside ݔ௜; 
5:   ܴ௢௨௧ ൌ region outside of ݔ௜; 
௜௡ݓ   :6 ൌ ௡ೢ೓೔೟೐ሺோ೔೙ሻ௔௥௘௔ሺோ೔೙ሻ ; 

௢௨௧ݓ   :7 ൌ ௡೙೚೟̴ೢ೓೔೟೐ሺோ೚ೠ೟ሻ௔௥௘௔ሺோ೚ೠ೟ሻ ൈ ͳሺ௡೒ೝ೐೐೙ሺோ೚ೠ೟ሻ௔௥௘௔ሺோ೚ೠ೟ሻ ൐  ;௧௛௥௘௦௛௢௟ௗሻ݊݁݁ݎ݃

௜ǡ௪ݔ   :8 ൌ ௜௡ݓ ൈ  ; ௢௨௧ݓ

9:  end for 

10:  ȱ ൌ  Resample ሼݔ௜ሽ௜ୀଵ௡  with probability ൛ݔ௜ǡ௪ൟ௜ୀଵ௡
; 

11: end for 

12: ValidCandidates ൌ ൛ݔ௜  ȁ ݔ௜ǡ௪ ൐ ௧௛௥௘௦௛௢௟ௗൟ௜ୀଵ௡ݓ
; 

13: ClusteredRegions ൌ clusterሺValidCandidatesሻ; 

14: return top̴kሺClusteredRegionsሻ; 
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Each feature map is tiled with some predefined anchor boxes in a convolutional way 

and produces a fixed set of boxes with per-class scores for each box. MobileNets is an 

efficient model for embedded systems which is established on separable convolution-

al blocks.  A separable convolutional block is a depthwise convolution followed by a 

1×1 convolution. A 3×3 separable convolution is 8 to 9 times faster than a normal 

convolution without significant reduction in its accuracy [20]. 

 

Fig. 2. The architecture of our deep convolutional network (BallNet) for ball detection (top). 

The microarchitecture of 3×3 normal and separable convolutions are shown in the bottom. 

Our network is illustrated in Fig. 2. It merely consists of some low cost convolu-

tional and average pooling layers. To compress information of the input image effi-

ciently we downsampled the activation maps by a factor of two while doubling the 

number of channels. After all convolutions, we applied batch normalization (except 

for the convolutions applied to the feature maps). By normalizing the inputs of a lay-

er, batch normalization acts as a regularizer and often eliminates the requirement of 

dropout [21]. In our case, this speeds up the training process while yielding consistent 

accuracy. To detect the balls, we have employed two last activation maps of the net-

work as feature maps. At every ݉ ൈ ݊ feature map with ݇ associated anchor boxes to 

each cell, we produce ݇ ൈ ݉ ൈ ݊ detections. In this work, all anchor boxes are square 

shaped and located at the center of the feature map cells. Each detection can be con-

sidered as a vector of seven scalars, in which each element is predicted by applying a ͳ ൈ ͳ convolutional filter. To express the bounding box of a detection ݀௜ we use a 

tuple ݈௜ ൌ ൫݈௜௖௫ ǡ ݈௜௖௬ ǡ ݈௜௪൯, where ݈௜௖௫ and ݈௜௖௬
are scale-invariant translations of the center 

coordinates and ݈௜௪ is the log-space translation of the width relative to the correspond-

ing anchor box ܽ௜. Also, a tuple of two scalars ݌௜ ൌ ሺ݌௜௕௔௟௟ ǡ  ௜௕௚ሻ is used to indicate the݌
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scores of the ball and background classes. The scalar ܿ௜  shows the confidence score of 

a detection. It reflects the confident level that the predicted bounding box fits the 

boundary of a ball. There are two anchor boxes related to each cell of the first ʹ ൈ ʹ 

feature map with scales of  ͲǤʹͷ and ͲǤͶ (Fig. 2 b). The second feature map uses three 

anchor boxes with scales of  ͲǤ͵͵ , ͲǤͷ and ͲǤ͹ͷ (Fig. 2 c). These scales and number 

of anchor boxes are determined so that the first feature map is more responsible for 

balls located at the corners, and the second one is more responsible for center located 

balls. 

4.2 Training Phase 

Training of the introduced network involves matching strategy of anchor boxes, opti-

mization of a multi-task cost function, and preparing the dataset. 

Assignment of anchor boxes. To match anchor boxes with an annotated label we 

follow SSD [2]. With each sample containing a ball, we first calculate the Jaccard 

overlap (also known as intersection over union) between the annotated box and each 

of the anchor boxes. Note that the location and size of the anchor boxes in the feature 

maps and the annotated box in the sample image are normalized. Then the anchor box 

with the best score in Jaccard overlap is selected as the best matching anchor box. As 

described in [2] we also match anchor boxes with Jaccard overlap above a value 0.5 

to ease the learning procedure.  

Loss function. The loss function in our algorithm is based on both SSD [2] and 

YOLO [3]. We define the loss function as an ensemble of three terms named localiza-

tion loss (ܮ௟௢௖), classification loss (ܮ௖௟௦), and confidence loss (ܮ௖௢௡௙): 

௧௢௧௔௟ܮ  ൌ ଵே ሺܮߙ௟௢௖ ൅ ௖௟௦ܮߚ  ൅  ௖௢௡௙ሻ (1)ܮߛ

In which ߙǡ  specify the contribution of the loss of each task and is determined ߛ andߚ

by cross validation. ܰ is the number of anchor boxes matched with the ground truth 

box. The localization loss counts only for the matched anchor boxes with the ground 

truth box: 

௟௢௖ሺ݈ǡܮ  ݃ሻ ൌ  σ σ ȁ݈௜௠ െ ො݃௜௠ȁ௠ א ሼ௖௫ǡ௖௬ǡ௪ሽ  ே௜א୮୭ୱ  (2) 

 ො݃௜௖௫ ൌ ൫௚೎ೣ ି ௔೔೎ೣ ൯௔೔ೢ           ො݃௜௖௬ ൌ ൫௚೔೎೤ ି ௔೔೎೤ ൯௔೔ೢ  (3) 

 ො݃௜௪ ൌ logሺ௚೔ೢ  ௔೔ೢ ሻ (4) 

where ݈௜ is the predicted box related to the selected anchor box ܽ௜ and ො݃௜ is the ground 

truth box ݃ encoded with respect to ܽ௜. The classification loss is the sum of ball class 

losses for selected anchor boxes (i.e. positive boxes) and background class losses for 

anchor boxes which are not matched (i.e. negative boxes): 
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ሻ݌௖௟௦ሺܮ  ൌ  െ σ Ƹ௜௕௔௟௟ሻ݌ሺ݃݋݈ െ σ ୬ୣ୥אƸ௜௕௚ሻ ெ௜݌ሺ݃݋݈  ே௜א୮୭ୱ  (5) 

where ܯ is the number of negative boxes used. To balance between positive and neg-

ative examples we set ܯ as twice of ܰ at most. The negative boxes with high predict-

ed scores for ball class are selected first. Also ݌Ƹ௜௖ is the softmax of a class ܿ ሼܾ݈݈ܽǡא ܾ݃ሽ: 

Ƹ௜௖݌  ൌ ௘௫௣ሺ௖೔೎ሻσ ௘௫௣ሺ௣೔೎ሻ೎  (6) 

We expect the confidence ܿ௜ of a positive box conveys the Intersection Over Union 

(IOU) between the decoded predicted box ݀ሺ݈௜ሻ and the ground truth ݃. So we de-

fined the confidence loss as follows: 

௖௢௡௙ሺܿሻܮ  ൌ  σ ቚܿ௜ െ ௗሺ௟೔ሻ ௚ܷܱܫ ቚ ே௜א୮୭ୱ  (7) 

Optimization.  To optimize the loss function we have used Adam optimizer with a 

piecewise constant schedule for learning rate. In our experiments, we begin with 1e-3 

as starting learning rate. We perform a training phase for 5k iterations followed by 

reducing the learning rate to 1e-4 and then continuing the training for 10k iterations.  

We lowered the learning rate once more to 1e-5 for 3k more iterations. We also tried 

other learning rate schedules like poly and exponential learning rate decay methods 

but we have found the piecewise constant schedule works better for our application.  

We also set ߚ ,ߙ and ߛ to 5, 0.6 and 1 respectively. In our experiments, we found 

the classification task is relatively easier than localization to learn. To avoid overfit-

ting in the classification task we set ߚ to 0.2 after 7k iterations of training. 

Data set. One of the most important aspects of modern object detection systems is the 

data set. To prepare the data set we annotated 1k images from various RoboCup com-

petitions and our research lab, including 5 different types of balls and variety of nega-

tive candidates like robots, goal posts, penalty marker, humans, and other objects 

around the field. In the data set, all balls are located approximately at a distance up to 

4 meters away from the camera. Then we generated 64×64 patches by applying the 

random crop, random scale, mirroring and random brightness around ball regions and 

other regions of the annotated images. To augment negative patches with more di-

verse regions we manually created some patches around goal posts, lines, and penalty 

markers. Our training set after augmentation contains 12k images. Some positive and 

negative samples are shown in Fig. 3 rows 1-4.  
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Fig. 3. Row 1, 2: Positive samples in the training data set. Row 3 and 4: Negative samples in 

the training data set, Row 5: Positive samples of the validation data set. Row 6: Positive sam-

ples of generalization data set with a new ball pattern not used for training. 

4.3 Inference 

At the inference stage, we assume that the category of a detection is the class with the 

maximum predicted score. Therefore it is possible that several detections report the 

ball class. Among these detections, we select a detection ݀௜ maximizing the localiza-

tion score ݏ௜ ൌ ௜௕௔௟௟݌ ൈ ܿ௜. As mentioned before the network only predicts a set of 

offsets to the assigned anchor box, hence to get final bounding box we decode the 

predicted bounding box ݈௜:  
 ݀௖௫ሺ݈௜ሻ ൌ ሺ݈௜௖௫ כ  ܽ௜௪ሻ ൅ ܽ௜௖௫      ݀௖௬ሺ݈௜ሻ ൌ ൫݈௜௖௬ כ  ܽ௜௪൯ ൅ ܽ௜௖௬

 (8) 

 ݀௪ሺ݈௜ሻ ൌ ݀௛ሺ݈௜ሻ ൌ ሺܽ௜௪ሻ݌ݔ݁  כ ܽ௜௪   (9)  

5 Experiments  

In this section, we evaluate the performance of the ball regions detection algorithm. 

Then we show the effectiveness of the designed neural network under different condi-

tions. Moreover, the overall performance of the proposed ball detection method is 

investigated in a real-world test. All experiments are performed in a kid-size human-

oid robot [22] equipped with a Logitech c920 camera capturing 640×480 images at a 
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rate of 30 frames per second and an Intel NUC with a Core i3 U6100 processor. The 

training is carried out on a Nvidia GTX 1080 GPU. 

5.1 Region proposal analysis 

We evaluated our region proposal algorithm on 400 images acquired from various 

conditions including moving, occluded, on the line, and near the goal post balls while 

the robot is either walking or standing. Then we initialized the algorithm with 500 

particles and reduced it to 300 particles in the resampling step. After only two itera-

tions particles are converged. We noticed that in 96% of images our algorithm finds at 

least one region that contains a full ball and in 4% of images, the clustered regions 

cover a portion of the ball. The step by step process of the algorithm is shown in Fig. 

4. As shown in column three, our algorithm can detect regions with different ball 

patterns and sizes without any modification. Table 1 represents the run-time cost of 

the algorithm. The algorithm takes 1.46 milliseconds in average that indicates it as a 

fast and real-time region proposal method. 

 

Fig. 4. The process of generating the ball regions. Top row: initialized particles. Middle row: 

converged particles after two iterations. Bottom row: Final clustered regions. 

Table 1. Run-time cost of ball region proposal algorithm in milliseconds. 

Steps Max Average 

Creating integral images 1.48 0.5 

Converging particles 4.19 0.88 

Clustering 1.22 0.08 

5.2 Model analysis 

To evaluate our network (the BallNet) we prepared two datasets, the first set contains 

2k images of both positive and negative samples with the same ball patterns existed in 

training dataset (Fig. 3 row 5); The second set contains 1k of only positive samples 
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with a new ball pattern that are never used in training (Fig. 3 row 6). The second set 

tests the generalizability of our model. This is important because, in the humanoid 

soccer league, participating teams may face with new ball patterns in every RoboCup 

competition. Also, to investigate a speed-accuracy trade-off we trained a lighter net-

work (BallNet-mini) in which all activation maps are halved compared to the BallNet.  

Validation. Similar to other researchers we use the most common metrics of accura-

cy, recall rate, and precision rate to evaluate our classifiers. However, in the RoboCup 

soccer leagues, misclassification of the ball can lead to a score loss. Therefore we also 

analysed false positive rate. As can be seen in Table 2 the proposed BallNet model 

benefits from a high precision and recall rate while maintaining a low false positive 

rate, which means the trained model is able to accurately detect balls in most regions 

covering a ball. As mentioned earlier, the classification task is rather easier than the 

localization. Therefore the BallNet-mini model reported promising metrics, although 

all the metrics degraded slightly.   

Table 2. Classification performance of the proposed networks 

Model name Accuracy Precision rate Recall rate FP rate. 

BallNet 96.43 97.17 94.29 2.00 

BallNet-mini 94.84 95.71 91.89 3.00 

 

To evaluate the performance of the networks in the localization task we used aver-

age IOU and precision with IOU levels more than 0.5, 0.75 and 0.9. Note that only the 

samples labeled and classified as ball are used to calculate the metrics. Table 3 shows 

the high accuracy of BallNet model localization. As expected the BallNet model with 

more capacity outperforms the smaller model in localization task. Fig. 5 shows the 

results with different IOU levels. 

Table 3. Localization performance of the proposed networks 

Model Name Avg. IOU P:0.5 P:0.75 P:0.9 

BallNet 0.788 96.23 66.70 9.17 

BallNet-mini 0.763 92.86 56.95 7.84 

Generalization. Since there are no negative samples in the generalization set, we 

only used detection rate (number of samples detected as positive divided by the num-

ber of positive samples in the data set) to evaluate the classification performance of 

our models. As summarized in Table 4 the BallNet significantly outperforms the 

BallNet-mini at the generalization of both classification and localization tasks. Alt-

hough the detection rate is significantly decreased in the BallNet, the result shows that 

there is a high possibility of increasing the model performance with fine-tuning dur-

ing the competitions. 
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Fig. 5. The result of the ball detections with different IOU levels of P:0.9, P:0.75, and P:0.5 

illustrated in the top, middle, and bottom row, respectively. 

Table 4. The performance of the models on the generalization set.  

Model Name Detection rate Avg. IOU P:0.5 P:0.75 P:0.9 

BallNet 70.9 0.768 94.30 69.2 10.11 

BallNet-mini 53.53 0.69 90.0 40.75 3.20 

Time complexity. We have evaluated the speed of the models at inferencing and 

training phases. As shown in Table 5, both models are very fast. Although we have 

halved the BallNet-mini, the inference time has not linearly decreased compared to 

the BallNet. The discrepancy may be more highlighted in a weaker computing device. 

Table 5. Time and parameters complexity of the models. 

Model Name Inference (ms) Train (minute) Parameters GFLOPS 

BallNet 1.782 17.04 65,166 133,319 

BallNet-mini 1.198 16.30 21,686 44,855 

5.3 Overall performance  

To evaluate the overall performance of the presented pipeline, we saved the input 

images, detected regions, and predictions of the BallNet once in every 10 frames from 

a 5-minute real gameplay. The resulting measurements of the classification were as 

follows: 91.43% accuracy, 89.72% precision rate, 80.07% recall rate, and 3.30% of 

false ratio. Also, we measured a runtime cost of 5.13 milliseconds in average for the 

entire detection pipeline while other tasks of the robot were running in parallel. As 

can be seen, due to different lighting conditions and more blurred images caused by 

robot movements, we experienced a weaker performance. 
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Conclusion 

In this paper, we presented a fast and accurate ball detection pipeline for humanoid 

soccer playing robots. The first stage of the proposed method reliably extracts some 

regions that may contain a full ball and then the designed deep neural network (called 

the BallNet) predicts the exact location of the ball in each region, with a high recall 

and precision rate. We demonstrated that our region proposal algorithm can deal with 

different ball types without further modifications. The proposed pipeline also fulfilled 

the computational constraints of low-cost humanoid robots. The method is fast to train 

(about 17 minutes) and in average takes less than 5 milliseconds to run on a standard 

Core i3 CPU. The pipeline can be applied for detecting other objects with known 

sizes like the goal posts and other robots. Our data sets and TensorFlow implementa-

tion of the network is publically available online1 for other researchers and future 

works.  
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