326 research outputs found

    The Wegener Theory

    Get PDF

    The development of high field magnets utilizing Bi-2212 wind & react insert coils

    No full text
    Wind & react Bi-2212 inserts have been manufactured and tested inside a wide-bore NbTi-Nb3Sn magnet providing a background field up to 20T at 4.2K. A pair of six-layer concentric coils both achieved critical currents of 350 A (JE = 200 A/mm2) in a 20T background field. A thicker 14-layer insert made from 119m of round wire had a critical quench current IQ of 287A (JE = 162 A/mm2) at the same field and contributed to a combined central field of 22.5 T. This is a record for a fully superconducting magnet at 4.2 K. The 14-layer coil, equipped with an external protective shunt, was used for an extensive series of quench measurements and endured >150 quenches without damage. Minimum quench energies were found to be in the range of 200-500mJ in background fields of 15-20T when the coil carried 70-95% of its critical quench current

    Descriptors of Posidonia oceanica meadows: Use and application

    Get PDF
    The conservation of the coastal marine environment requires the possession of information that enables the global quality of the environment to be evaluated reliably and relatively quickly. The use of biological indicators is often an appropriate method. Seagrasses in general, and Posidonia oceanica meadows in particular, are considered to be appropriate for biomonitoring because of their wide distribution, reasonable size, sedentary habit, easy collection and abundance and sensitivity to modifications of littoral zone. Reasoned management, on the scale of the whole Mediterranean basin, requires standardized methods of study, to be applied by both researchers and administrators, enabling comparable results to be obtained. This paper synthesises the existing methods applied to monitor P. oceanica meadows, identifies the most suitable techniques and suggests future research directions. From the results of a questionnaire, distributed to all the identified laboratories working on this topic, a list of the most commonly used descriptors was drawn up, together with the related research techniques (e.g. standardization, interest and limits, valuation of the results). It seems that the techniques used to study meadows are rather similar, but rarely identical, even though the various teams often refer to previously published works. This paper shows the interest of a practical guide that describes, in a standardized way, the most useful techniques enabling P. oceanica meadows to be used as an environmental descriptor. Indeed, it constitutes the first stage in the process. (c) 2005 Elsevier Ltd. All rights reserved.Peer reviewe

    Marine Invasion in the Mediterranean Sea: The Role of Abiotic Factors When There Is No Biological Resistance

    Get PDF
    The tropical red alga Womersleyella setacea (Rhodomelaceae, Rhodophyta) is causing increasing concern in the Mediterranean Sea because of its invasive behavior. After its introduction it has colonized most Mediterranean areas, but the mechanism underlying its acclimatization and invasion process remains unknown. To understand this process, we decided i) to assess in situ the seasonal biomass and phenological patterns of populations inhabiting the Mediterranean Sea in relation to the main environmental factors, and ii) to experimentally determine if the tolerance of W. setacea to different light and temperature conditions can explain its colonization success, as well as its bathymetric distribution range. The bathymetric distribution, biomass, and phenology of W. setacea were studied at two localities, and related to irradiance and temperature values recorded in situ. Laboratory experiments were set up to study survival, growth and reproduction under contrasting light and temperature conditions in the short, mid, and long term.Results showed that, in the studied area, the bathymetric distribution of W. setacea is restricted to a depth belt between 25 and 40 m deep, reaching maximum biomass values (126 g dw m−2) at 30 m depth. In concordance, although in the short term W. setacea survived and grew in a large range of environmental conditions, its life requirements for the mid and long term were dim light levels and low temperatures. Biomass of Womersleyella setacea did not show any clear seasonal pattern, though minimum values were reported in spring. Reproductive structures were always absent. Bearing in mind that no herbivores feed on Womersleyella setacea and that its thermal preferences are more characteristic of temperate than of tropical seaweeds, low light (50 µmol photon m−2 s−1) and low temperature (12°C) levels are critical for W. setacea survival and growth, thus probably determining its spread and bathymetric distribution across the Mediterranean Sea

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    How Do They Do It? – Understanding the Success of Marine Invasive Species

    Get PDF
    From the depths of the oceans to the shallow estuaries and wetlands of our coasts, organisms of the marine environment are teeming with unique adaptations to cope with a multitude of varying environmental conditions. With millions of years and a vast volume of water to call their home, they have become quite adept at developing specialized and unique techniques for survival and – given increasing human mediated transport – biological invasions. A growing world human population and a global economy drives the transportation of goods across the oceans and with them invasive species via ballast water and attached to ship hulls. In any given 24-hour period, there are about 10,000 species being transported across different biogeographic regions. If any of them manage to take hold and establish a range in an exotic habitat, the implications for local ecosystems can be costly. This review on marine invasions highlights trends among successful non-indigenous species (NIS), from vectors of transport to ecological and physiological plasticity. Apart from summarizing patterns of successful invasions, it discusses the implications of how successfully established NIS impact the local environment, economy and human health. Finally, it looks to the future and discusses what questions need to be addressed and what models can tell us about what the outlook on future marine invasions is
    corecore