151 research outputs found

    Freshwater displacement effect on the Weddell Gyre carbon budget

    Get PDF
    This work was funded by NSF's Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project under NSF awards PLR-1425989 and OPP-1936222. G.A.M was additionally supported under UKRI Grant MR/W013835/1. M.R.M. also acknowledges support from NASA grant 80NSSC20K1076 and NSF grants OCE-1924388 and OPP-2149501.The Weddell Gyre mediates carbon exchange between the abyssal ocean and atmosphere, which is critical to global climate. This region also features large and highly variable freshwater fluxes due to seasonal sea ice, net precipitation, and glacial melt; however, the impact of these freshwater fluxes on the regional carbon cycle has not been fully appreciated. Using a novel budget analysis of dissolved inorganic carbon (DIC) mass in the Biogeochemical Southern Ocean State Estimate, we highlight two freshwater-driven transports. Where freshwater with minimal DIC enters the ocean, it displaces DIC-rich seawater outwards, driving a lateral transport of 75 ± 5 Tg DIC/year. Additionally, sea ice export requires a compensating import of seawater, which carries 48 ± 11 Tg DIC/year into the gyre. Though often overlooked, these freshwater displacement effects are of leading order in the Weddell Gyre carbon budget in the state estimate and in regrouped box-inversion estimates, with implications for evaluating basin-scale carbon transport.Publisher PDFPeer reviewe

    Exploring the relationship between sea ice and phytoplankton growth in the Weddell Gyre using satellite and Argo float data

    Get PDF
    Some of the highest rates of primary production across the Southern Ocean occur in the seasonal ice zone (SIZ), making this a prominent area of importance for both local ecosystems and the global carbon cycle. There, the annual advance and retreat of ice impacts light and nutrient availability, as well as the circulation and stratification, thereby imposing a dominant control on phytoplankton growth. In this study, the drivers of variability in phytoplankton growth between 2002–2020 in the Weddell Gyre SIZ were assessed using satellite net primary production (NPP) products alongside chlorophyll-a and particulate organic carbon (POC) data from autonomous biogeochemical floats. Although the highest daily rates of NPP are consistently observed in the continental shelf region (water depths shallower than 2000 m), the open-ocean region's larger size and longer ice-free season mean that it dominates biological carbon uptake within the Weddell Gyre, accounting for 93 %–96 % of the basin's total annual NPP. Variability in the summer maximum ice-free area is the strongest predictor of inter-annual variability in total NPP across the Weddell Gyre, with greater ice-free area resulting in greater annual NPP, explaining nearly half of the variance (R2=42 %). In the shelf region, the return of sea ice cover controls the end of the productive season. In the open ocean, however, both satellite NPP and float data show that a decline in NPP occurs before the end of the ice-free season (∼ 80 to 130 d after sea ice retreat). Evidence of concurrent increases in float-observed chlorophyll-a and POC suggest that later in the summer season additional factors such as micro-nutrient availability or top-down controls (e.g. grazing) could be limiting NPP. These results indicate that in a warmer and more ice-free Weddell Gyre, notwithstanding compensating changes in nutrient supply, NPP is likely to be enhanced only up to a certain limit of ice-free days.</p

    Effect of enhanced pCO2 levels on the production of dissolved organic carbon and transparent exopolymer particles in short-term bioassay experiments

    Get PDF
    It has been proposed that increasing levels of pCO(2) in the surface ocean will lead to more partitioning of the organic carbon fixed by marine primary production into the dissolved rather than the particulate fraction. This process may result in enhanced accumulation of dissolved organic carbon (DOC) in the surface ocean and/or concurrent accumulation of transparent exopolymer particles (TEPs), with important implications for the functioning of the marine carbon cycle. We investigated this in shipboard bioassay experiments that considered the effect of four different pCO(2) scenarios (ambient, 550, 750 and 1000 mu atm) on unamended natural phytoplankton communities from a range of locations in the northwest European shelf seas. The environmental settings, in terms of nutrient availability, phytoplankton community structure and growth conditions, varied considerably between locations. We did not observe any strong or consistent effect of pCO(2) on DOC production. There was a significant but highly variable effect of pCO(2) on the production of TEPs. In three of the five experiments, variation of TEP production between pCO(2) treatments was caused by the effect of pCO(2) on phytoplankton growth rather than a direct effect on TEP production. In one of the five experiments, there was evidence of enhanced TEP production at high pCO(2) (twice as much production over the 96 h incubation period in the 750 mu atm treatment compared with the ambient treatment) independent of indirect effects, as hypothesised by previous studies. Our results suggest that the environmental setting of experiments (community structure, nutrient availability and occurrence of phytoplankton growth) is a key factor determining the TEP response to pCO(2) perturbations

    High-latitude ocean ventilation and its role in Earth's climate transitions

    Get PDF
    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered

    Ross Gyre variability modulates oceanic heat supply toward the West Antarctic continental shelf

    Get PDF
    C.J.P., G.A.M., M.R.M., L.D.T., and S.T.G. were supported by NSF PLR-1425989 and OPP-1936222 (Southern Ocean Carbon and Climate Observations and Modeling project). C.J.P. received additional support from a NOAA Climate & Global Change Postdoctoral Fellowship. G.A.M. received additional support from UKRI Grant Ref. MR/W013835/1. G.E.M. was supported by NSF OPP-2220969. R.Q.P. was supported by the High Meadows Environmental Institute Internship Program. R.M. was supported by the General Sir John Monash Foundation. A.F.T. was supported by NSF OPP-1644172 and NASA grant 80NSSC21K0916. M.R.M. also acknowledges funding from NSF awards OCE-1924388 and OPP-2319829 and NASA awards 80NSSC22K0387 and 80NSSC20K1076.West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyre’s eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing.Publisher PDFPeer reviewe

    Science lives: School choices and ‘natural tendencies’

    Get PDF
    An analysis of 12 semi-structured interviews with university-based scientists and non-scientists illustrates their life journeys towards, or away from, science and the strengths and impact of life occurrences leading them to choose science or non-science professions. We have adopted narrative approaches and used Mezirow's transformative learning theory framework. The areas of discussion from the result have stressed on three main categories that include ‘smooth transition’, ‘incremental wavering transition' and ‘transformative transition’. The article concludes by discussing the key influences that shaped initial attitudes and direction in these people through natural inclination, environmental inspirations and perceptions of science

    Palliative Care for People with Advanced Liver Disease: A Feasibility Trial of a Supportive Care Liver Nurse Specialist

    Get PDF
    Background:Liver disease is an increasing cause of death worldwide but palliative care is largely absent for these patients.Aim:We conducted a feasibility trial of a complex intervention delivered by a supportive care liver nurse specialist to improve care coordination, anticipatory care planning and quality of life for people with advanced liver disease and their carers.Design:Patients received a 6-month intervention (alongside usual care) from a specially trained liver nurse specialist. The nurse supported patients/carers to live as well as possible with the condition and acted as a resource to facilitate care by community professionals. A mixed-method evaluation was conducted. Case note analysis and questionnaires examined resource use, care planning processes and quality-of-life outcomes over time. Interviews with patients, carers and professionals explored acceptability, effectiveness, feasibility and the intervention.Setting/participants:Patients with advanced liver disease who had an unplanned hospital admission with decompensated cirrhosis were recruited from an inpatient liver unit. The intervention was delivered to patients once they had returned home.Results:We recruited 47 patients, 27 family carers and 13 case-linked professionals. The intervention was acceptable to all participants. They welcomed access to additional expert advice, support and continuity of care. The intervention greatly increased the number of electronic summary care plans shared by primary care and hospitals. The Palliative care Outcome Scale and EuroQol-5D-5L questionnaire were suitable outcome measurement tools.Conclusion:This nurse-led intervention proved acceptable and feasible. We have refined the recruitment processes and outcome measures for a future randomised controlled trial

    Getting the right balance: insole design alters the static balance of people with diabetes and neuropathy

    Get PDF
    BACKGROUND: Over 1 in 3 older people with diabetes sustain a fall each year. Postural instability has been identified as independent risk factor for falls within people with Diabetic Peripheral Neuropathy (DPN). People with DPN, at increased risk of falls, are routinely required to wear offloading insoles, yet the impact of these insoles on postural stability and postural control is unknown. The aim of this study was to evaluate the effect of a standard offloading insole and its constituent parts on the balance in people with DPN. METHODS: A random sample of 50 patients with DPN were observed standing for 3 × 30 s, and stepping in response to a light, under five conditions presented in a random order; as defined by a computer program; 1) no insole, 2) standard diabetic: a standard offloading insole made from EVA/poron®, and three other insoles with one design component systematically altered 3) flat: diabetic offloading insole with arch fill removed, 4) low resilient memory: diabetic offloading insole with the cover substituted with low resilience memory V9, 5) textured: diabetic offloading insole with a textured PVC surface added (Algeos Ltd). After each condition participants self-rated perceived steadiness. RESULTS: Insole design effected static balance and balance perception, but not stepping reaction time in people with DPN. The diabetic and memory shaped insoles (with arch fill) significantly increased centre of pressure velocity (14 %, P = 0.006), (13 %, P = 0.001), and path length (14 %, P = 0.006), (13 %, P = 001), when compared to the no insole condition. The textured shaped and flat soft insole had no effect on static balance when compared to the no insole condition (P > 0.05). CONCLUSION: Insoles have an effect on static balance but not stepping reaction time. This effect is independent of neuropathy severity. The addition of a textured cover seems to counter the negative effect of an arch fill, even in participants with severe sensation loss. Static balance is unaffected by material softness or resilience. Current best practice of providing offloading insoles, with arch fill, to increase contact area and reduce peak pressure could be making people more unstable. Whilst flat, soft insoles maybe the preferable design option for those with poor balance. There is a need to develop an offloading insole that can reduce diabetic foot ulcer risk, without compromising balance

    A marine biogenic source of atmospheric ice nucleating particles

    Get PDF
    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties1,2. The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3-11. Sea spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer12-19. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice nucleating material is likely biogenic and less than ~0.2 μm in size. We find that exudates separated from cells of the marine diatom T. Pseudonana nucleate ice and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol in combination with our measurements suggest that marine organic material may be an important source of ice nucleating particles in remote marine environments such as the Southern Ocean, North Pacific and North Atlantic
    • …
    corecore