530 research outputs found

    Strong coupling between single-electron tunneling and nano-mechanical motion

    Full text link
    Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10^5 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.Comment: Main text 12 pages, 4 Figures, Supplement 13 pages, 6 Figure

    Proteoglycan binding as proatherogenic function metric of apoB-containing lipoproteins and chronic kidney graft failure

    Get PDF
    Lipoprotein-proteoglycan binding is an early key event in atherosclerotic lesion formation and thus conceivably could play a major role in vasculopathy-driven chronic graft failure and cardiovascular mortality in renal transplant recipients. The present study investigated whether lipoproteinproteoglycan binding susceptibility (LPBS) of apoBcontaining lipoproteins and levels of the classical atherosclerosis biomarker LDL-C were associated with cardiovascular mortality (n = 130) and graft failure (n = 73) in 589 renal transplant recipients who were followed up from at least 1 year after transplantation for 9.5 years. At baseline, LPBS was significantly higher in patients who subsequently developed graft failure than in those with a surviving graft (1.68 +/- 0.93 vs. 1.46 +/- 0.49 nmol/mmol, P = 0.001). Cox regression analysis showed an association between LPBS and chronic graft failure in an age-and sex-adjusted model (hazard ratio: 1.45; 95% CI, 1.14-1.85; P = 0.002), but no association was observed with cardiovascular mortality. LDL-C levels were not associated with graft failure or cardiovascular mortality. This study shows that measurement of cholesterol retention outperformed the traditionally used quantitative parameter of LDL-C levels in predicting graft failure, suggesting a higher relevance of proatherogenic function than the quantity of apoBcontaining lipoproteins in chronic kidney graft failure.Peer reviewe

    Mechanical properties of freely suspended atomically thin dielectric layers of mica

    Full text link
    We have studied the elastic deformation of freely suspended atomically thin sheets of muscovite mica, a widely used electrical insulator in its bulk form. Using an atomic force microscope, we carried out bending test experiments to determine the Young's modulus and the initial pre-tension of mica nanosheets with thicknesses ranging from 14 layers down to just one bilayer. We found that their Young's modulus is high (190 GPa), in agreement with the bulk value, which indicates that the exfoliation procedure employed to fabricate these nanolayers does not introduce a noticeable amount of defects. Additionally, ultrathin mica shows low pre-strain and can withstand reversible deformations up to tens of nanometers without breaking. The low pre-tension and high Young's modulus and breaking force found in these ultrathin mica layers demonstrates their prospective use as a complement for graphene in applications requiring flexible insulating materials or as reinforcement in nanocomposites.Comment: 9 pages, 5 figures, selected as cover of Nano Research, Volume 5, Number 8 (2012

    Accuracy and repeatability of joint sparsity multi-component estimation in MR Fingerprinting

    Get PDF
    MR fingerprinting (MRF) is a promising method for quantitative characterization of tissues. Often, voxel-wise measurements are made, assuming a single tissue-type per voxel. Alternatively, the Sparsity Promoting Iterative Joint Non-negative least squares Multi-Component MRF method (SPIJN-MRF) facilitates tissue parameter estima-tion for identified components as well as partial volume segmentations. The aim of this paper was to evaluate the accuracy and repeatability of the SPIJN-MRF parameter estimations and partial volume segmentations. This was done (1) through numerical simulations based on the BrainWeb phantoms and (2) using in vivo acquired MRF data from 5 subjects that were scanned on the same week-day for 8 consecutive weeks. The partial volume segmen-tations of the SPIJN-MRF method were compared to those obtained by two conventional methods: SPM12 and FSL. SPIJN-MRF showed higher accuracy in simulations in comparison to FSL-and SPM12-based segmentations: Fuzzy Tanimoto Coefficients (FTC) comparing these segmentations and Brainweb references were higher than 0.95 for SPIJN-MRF in all the tissues and between 0.6 and 0.7 for SPM12 and FSL in white and gray matter and between 0.5 and 0.6 in CSF. For the in vivo MRF data, the estimated relaxation times were in line with literature and minimal variation was observed. Furthermore, the coefficient of variation (CoV) for estimated tissue volumes with SPIJN-MRF were 10.5% for the myelin water, 6.0% for the white matter, 5.6% for the gray matter, 4.6% for the CSF and 1.1% for the total brain volume. CoVs for CSF and total brain volume measured on the scanned data for SPIJN-MRF were in line with those obtained with SPM12 and FSL. The CoVs for white and gray mat-ter volumes were distinctively higher for SPIJN-MRF than those measured with SPM12 and FSL. In conclusion, the use of SPIJN-MRF provides accurate and precise tissue relaxation parameter estimations taking into account intrinsic partial volume effects. It facilitates obtaining tissue fraction maps of prevalent tissues including myelin water which can be relevant for evaluating diseases affecting the white matter.Radiolog

    Nanoscale Mechanical Drumming Visualized by 4D Electron Microscopy

    Get PDF
    With four-dimensional (4D) electron microscopy, we report in situ imaging of the mechanical drumming of a nanoscale material. The single crystal graphite film is found to exhibit global resonance motion that is fully reversible and follows the same evolution after each initiating stress pulse. At early times, the motion appears “chaotic” showing the different mechanical modes present over the micron scale. At longer time, the motion of the thin film collapses into a well-defined fundamental frequency of 1.08 MHz, a behavior reminiscent of mode locking; the mechanical motion damps out after ∼200 μs and the oscillation has a “cavity” quality factor of 150. The resonance time is determined by the stiffness of the material, and for the 75 nm thick and 40 μm square specimen used here we determined Young’s modulus to be 1.0 TPa for the in-plane stress−strain profile. Because of its real-time dimension, this 4D microscopy should have applications in the study of these and other types of materials structures

    Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes

    Get PDF
    The small mass and atomic-scale thickness of graphene membranes make them highly suitable for nanoelectromechanical devices such as e.g. mass sensors, high frequency resonators or memory elements. Although only atomically thick, many of the mechanical properties of graphene membranes can be described by classical continuum mechanics. An important parameter for predicting the performance and linearity of graphene nanoelectromechanical devices as well as for describing ripple formation and other properties such as electron scattering mechanisms, is the bending rigidity, {\kappa}. In spite of the importance of this parameter it has so far only been estimated indirectly for monolayer graphene from the phonon spectrum of graphite, estimated from AFM measurements or predicted from ab initio calculations or bond-order potential models. Here, we employ a new approach to the experimental determination of {\kappa} by exploiting the snap-through instability in pre-buckled graphene membranes. We demonstrate the reproducible fabrication of convex buckled graphene membranes by controlling the thermal stress during the fabrication procedure and show the abrupt switching from convex to concave geometry that occurs when electrostatic pressure is applied via an underlying gate electrode. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.515+2035.5^{+20}_{-15} eV. Monolayers have significantly lower {\kappa} than bilayers

    Overview of In Situ X-ray Studies of Light Alloy Solidification in Microgravity

    Get PDF
    Gravity has significant effects on alloy solidification, primarily due to thermosolutal convection and solid phase buoyancy. Since 2004, the European Space Agency has been supporting investigation of these effects by promoting in situ X-ray monitoring of the solidification of aluminium alloys on microgravity platforms, on earth, and in periodically varying g conditions. The first microgravity experiment – investigating foaming of liquid metals – was performed on board a sounding rocket, in 2008. In 2012 the first ever X-ray-monitored solidification of a fully dense metallic alloy in space was achieved: the focus was columnar solidification of an Al-Cu alloy. This was followed in 2015 by a similar experiment, investigating equiaxed solidification. Ground reference experiments were completed in all cases. In addition, experiments have been performed on board parabolic flights – where the effects of varying gravity have been studied. We review here the technical and scientific progress to date, and outline future perspectives

    Long-term effects of chronic light pollution on seasonal functions of European blackbirds (turdus merula)

    Get PDF
    Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems

    The self-assessed psychological comorbidities of prurigo in Europe: data from the ESDAP study

    Get PDF
    PS16 Prurigo is defined by the presence of chronic pruritus and multiple localized or generalized pruriginous lesions. The aim of this study was to assess the psychological burden of prurigo in patients of European countries. In this multicentre European study, 3, 635 general dermatology outpatients and 1, 359 controls were included. Socio-demographic data and answers to questionnaires (regarding quality of life, general health, anxiety and depression and suicidal ideation) were collected.There were 27 patients with prurigo; of these, 63% were men, and the mean age was 58.6 years. Among patients with prurigo, 10 of 27 (37%) suffered from anxiety and 8 of 27 (29%) from depression. Suicidal ideation was reported in 5 of 27 (19%) patients, and for 4 of these 5 patients, suicidal ideation was related to their skin disease. These frequencies were higher in the 10 commonest dermatological diseases (including psoriasis, atopic dermatitis and leg ulcers). The impact on quality of life was severe, with a mean Dermatologic Life Quality Index (DLQI) of 12.4, with an extreme impact on quality of life for 23% of patients and a very large impact for 27% of patients.The psychological comorbidities of prurigo are common, greater than those of other skin diseases, and their impact on quality of life is significant. Thus, it is important to study this condition and to find new treatments

    Quality of life measurement in alopecia areata. Position statement of the European Academy of Dermatology and Venereology Task Force on Quality of Life and Patient Oriented Outcomes

    Get PDF
    New treatment options may lead to an increased interest in using reliable and sensitive instruments to assess health-related quality of life in people with alopecia areata (AA). The purpose of this paper is to present current knowledge about quality of life assessment in AA. The dermatology-specific Dermatology Life Quality Index (DLQI) was the most widely reported health-related quality of life instrument used in AA. Three AA-specific (Alopecia Areata Symptom Impact Scale, Alopecia Areata Quality of Life Index and Alopecia Areata Patients'' Quality of Life) and three hair disease-specific instruments (Hairdex, Scalpdex and ‘hair-specific Skindex-29’) were identified with a range of content and validation characteristics: there is little evidence yet of the actual use of these measures in AA. Scalpdex is the best-validated hair disease-specific instrument. Further extensive validation is needed for all of the AA-specific instruments. The European Academy of Dermatology and Venereology Task Force on Quality of Life and Patient Oriented Outcomes recommends the use of the dermatology-specific DLQI questionnaire, hair disease-specific Scalpdex and the alopecia areata-specific instruments the Alopecia Areata Symptom Impact Scale or Alopecia Areata Quality of Life Index, despite the limited experience of their use. We hope that new treatment methods will be able to improve both clinical signs and health-related quality of life in patients with AA. In order to assess the outcomes of trials on these new treatment methods, it would be helpful when further development and validation of AA-specific instruments is being encouraged and also conducted. © 2021 European Academy of Dermatology and Venereology
    corecore