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a b s t r a c t 

MR fingerprinting (MRF) is a promising method for quantitative characterization of tissues. Often, voxel-wise 

measurements are made, assuming a single tissue-type per voxel. Alternatively, the Sparsity Promoting Iterative 

Joint Non-negative least squares Multi-Component MRF method (SPIJN-MRF) facilitates tissue parameter estima- 

tion for identified components as well as partial volume segmentations. The aim of this paper was to evaluate the 

accuracy and repeatability of the SPIJN-MRF parameter estimations and partial volume segmentations. This was 

done (1) through numerical simulations based on the BrainWeb phantoms and (2) using in vivo acquired MRF data 

from 5 subjects that were scanned on the same week-day for 8 consecutive weeks. The partial volume segmen- 

tations of the SPIJN-MRF method were compared to those obtained by two conventional methods: SPM12 and 

FSL. SPIJN-MRF showed higher accuracy in simulations in comparison to FSL- and SPM12-based segmentations: 

Fuzzy Tanimoto Coefficients (FTC) comparing these segmentations and Brainweb references were higher than 

0.95 for SPIJN-MRF in all the tissues and between 0.6 and 0.7 for SPM12 and FSL in white and gray matter and 

between 0.5 and 0.6 in CSF. For the in vivo MRF data, the estimated relaxation times were in line with literature 

and minimal variation was observed. Furthermore, the coefficient of variation (CoV) for estimated tissue volumes 

with SPIJN-MRF were 10.5% for the myelin water, 6.0% for the white matter, 5.6% for the gray matter, 4.6% 

for the CSF and 1.1% for the total brain volume. CoVs for CSF and total brain volume measured on the scanned 

data for SPIJN-MRF were in line with those obtained with SPM12 and FSL. The CoVs for white and gray mat- 

ter volumes were distinctively higher for SPIJN-MRF than those measured with SPM12 and FSL. In conclusion, 

the use of SPIJN-MRF provides accurate and precise tissue relaxation parameter estimations taking into account 

intrinsic partial volume effects. It facilitates obtaining tissue fraction maps of prevalent tissues including myelin 

water which can be relevant for evaluating diseases affecting the white matter. 
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. Introduction 

Quantitative magnetic resonance imaging is getting increasingly

ore attention since several fast, multiparametric quantitative meth-

ds have emerged, e.g. MR-Fingerprinting (MRF) ( Ma et al., 2013 ) and

RAPMASTER ( Warntjes et al., 2008 ). The reduced scan-time of these

cquisitions has facilitated their usefulness in research and clinical pro-

ocols ( Nunez-Gonzalez et al., 2021 ; Chen et al., 2016 ; Badve et al.,

017 ; Ryu et al., 2020 ; Pirkl et al., 2021 ). 

While these approaches can have a rich sensitivity to a wide range

f tissue properties, the measurements are typically made voxel-wise,
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ssuming a single tissue-type per voxel. However, partial volume ef-

ects are known to hinder this so-called single component approach

 Giorgio and De Stefano, 2013 ; Ross, 2011 ; Heinen et al., 2016 ;

e Bresser et al., 2011 ). Several methods were proposed facilitating

ulti-parameter estimates for a range of tissue components in a voxel.

xamples of such multi-component techniques for MRF are modeling

he signal with 3 a priori defined tissues ( Ma et al., 2013 ), a Bayesian

pproach ( McGivney et al., 2018 ; Deshmane et al., 2019 ), a reweighted-

 1 -norm regularized algorithm ( Tang et al., 2018 ), and a region-wise

reedy approximation method ( Duarte et al., 2020 ) . Following the prin-

iples of MRF, other techniques modeled bi-compartment voxels to dis-

inguish between water and fat in cardiac MRF ( Jaubert et al., 2020 ), to

eparate tissue from blood in arterial-spin-labeling MRF ( Su et al., 2017 )

r estimated T 1 -T 2 spectra per voxel ( Kim et al., 2022 ). However these

ethods are limited by long computation times, a restricted number

f pre-defined tissues within a voxel, and assume predominantly single
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ompartment voxels or concern very different types of multi-parameter

cquisitions. 

Another recently published method for coping with different tis-

ue types within a voxel is the Sparsity Promoting Iterative Joint

on-negative least squares algorithm that was applied to MRF data

 Nagtegaal et al., 2020 ) (SPIJN-MRF). This approach asserted joint spar-

ity of the number of tissue components in a region of interest, i.e. in a

oxel as well as spatially. A priori no assumptions are made about the

umber of tissues and relaxation times while the method still proved

aster than previously proposed techniques. As such it yields tissue pa-

ameters for each identified tissue component as well as tissue volume

raction maps. The SPIJN-MRF algorithm estimated brain tissue fraction

aps from fully sampled MRF data with promising accuracy and pre-

ision ( Nagtegaal et al., 2020 ). These maps particularly showed com-

onents representing myelin water, white matter (WM), gray matter

GM) and cerebrospinal fluid (CSF) components. To be able to distin-

uish myelin water is specially relevant in the diagnosis and evaluation

f multiple sclerosis (MS), since it has been shown that patients have

educed myelin water content ( Laule et al., 2008 ; Mackay et al., 1994 ;

aule et al., 2006 ; Kolind et al., 2015 ). Also, imaging the increasing

yelin content of the developing brain has been done in several initial

tudies ( Cencini et al., 2021 ; Chen et al., 2019 ). 

Although the initial results with the SPIJN-MRF method were en-

ouraging, an extensive study into the accuracy and precision of the

ethod has not yet been performed. Additionally, it is unknown how

he obtained brain tissue fraction maps relate to existing methods for

issue segmentations. 

The aim of this work is to evaluate the accuracy and repeatability of

he SPIJN-MRF parameter estimations from highly undersampled MRF

cquisitions. The accuracy of the method will be assessed through es-

imation of the relaxation times and tissue fractions on simulated data

rom the BrainWeb numerical phantom environment, including a com-

arison to conventional techniques: the Functional Magnetic Resonance

maging of the Brain Software Library (FSL) and the Statistical Paramet-

ic Mapping Software (SPM12). Furthermore, the repeatability will be

ssessed through the parameter estimates in eight weekly repeated scan

essions in 5 healthy volunteers. As in the simulations, tissue fraction

aps will be compared to the SPM12 and FSL segmentations. 

. Methods 

.1. Simulations 

Numerical simulations using the 20 BrainWeb phantoms ( Aubert-

roche et al., 2006 ) were performed to test the accuracy and precision

f the segmentations obtained with SPIJN-MRF and T 1 -weighted based

ethods (FSL,SPM12). The BrainWeb phantoms were based on multiple

igh resolution conventional weighted scans from 20 different healthy

ubjects. Simulations were performed with resolution 1 × 1 × 5mm 

3 . T 2 

alues were as defined in the BrainWeb database, but for white and gray

atter T 1 = 930 ms and 1300ms were used instead of 500 ms and 830

s as these are more realistic relaxation times for 3T ( Körzdörfer et al.,

019 ; Buonincontri et al., 2019 ). 

The MRF data was created by simulating a gradient-spoiled MRF se-

uence with a train of 1000 radiofrequency pulses as in ( Jiang et al.,

015 ). This was done by performing extended phase graph signal

eneration ( Weigel, 2015 ; Hennig, 1988 ) for each tissue after which

 weighted combination of the signals based on the BrainWeb par-

ial volume fractions yielded the MRF images. Subsequently, inde-

endent random complex Gaussian noise with standard deviation 𝜎 =
ax ( 𝑎𝑏𝑠 ( 𝑋) )∕100 was added to each MRF image 𝑋 𝑖 , to yield the same

oise level for all voxels and time points. No undersampling was per-

ormed in these simulations, as in ( Nagtegaal et al., 2020 ). 

The T 1 -weighted images were also simulated by the BrainWeb sim-

lator, using a spoiled FLASH sequence (TR = 18ms, TE = 10ms, FA = 30
2 
egrees), after which Rician noise was added with noise level parame-

er 𝜎 = max ( 𝑎𝑏𝑠 ( 𝑋) )∕100 . 
The input tissue parameters and partial volume segmentations from

he BrainWeb database served as ground truth values. 

.2. In vivo data acquisition 

In vivo acquisitions were performed on a 3.0T GE MR750 MRI scan-

er (General Electric, Milwaukee, WI, USA). A Head, Neck and Spine

rray coil was used from which the 12 channels dedicated to the head

ere used for imaging. 

Five healthy volunteers (3 females and 2 males, between 18–25

ears) participated in this Institutional Review Board-approved study.

ll volunteers gave written informed consent to usage of their data prior

o the first scan session. 

MRF imaging was performed on the same day and time ( ± 15 min)

f the week for 8 consecutive weeks. As such the same gradient-spoiled

RF sequence as in the simulations was applied, varying the flip angle

nd the TR along a train of 1000 radiofrequency pulses ( Jiang et al.,

015 ). The acquisition was performed with a FOV of 31 cm and slice

hickness of 5 mm and slice gap of 1 mm (voxel size 1.2 mm x 1.2 mm

 5 mm). Total number of slices was 27, consisting of 256 × 256 voxels.

he total scan time was 5 minutes and 54 seconds. 

In each session, a READYBrain sequence ( McMillan et al., 2022 ) was

pplied to align the MRF acquisitions to the anterior-posterior commis-

ure (AC-PC) plane. READYBrain automatically detects the AC-PC plane

or each subject and exploits this to plan the MRF with comparable imag-

ng orientation across time and subjects. 

Motion during 2D-MRF acquisitions is known to result in artifacts

nd errors in estimated T 1 and T 2 maps. Especially through-plane mo-

ion can lead to blurring and underestimation in T 2 ( Mehta et al., 2018 ;

u et al., 2018 ; Cruz et al., 2019 ; Kurzawski et al., 2022 ). Slices show-

ng such through-plane motion artifacts were visually identified in sin-

le component T 1 and T 2 maps by notably deviating values compared

o neighbouring slices before performing the multi-component analysis

nd excluded from further analysis unless explicitly stated otherwise. T 2 

nderestimation can also be caused by e.g. B 1 
+ inhomogeneity. How-

ver, we assert that B 1 
+ variation cannot cause abrupt changes in T 2 

rom slice to slice. 

.3. Image reconstruction 

The acquired MRF data was reconstructed using an in-house imple-

ented low-rank (LR) reconstruction algorithm in which the LR images

ere obtained while a compression matrix was iteratively updated. The

patial L 1 norm of the L 2 norm across the component images was applied

or regularization purposes. A complete description of the used method

an be found in Appendix I. 

.4. Single and multi-component parameter estimation 

A dictionary was precomputed with the extended phase graph algo-

ithm ( Weigel, 2015 ; Hennig, 1988 ). This dictionary was created for T 1 

alues ranging from 100 ms to 3042 ms and T 2 values from 10 ms to

030 ms, sampled with increasing step sizes by 5% (chosen as a com-

romise between dictionary size and resolution). 

Synthetic T 1 -weighted images were calculated based on the T 1 , T 2 

nd M 0 maps estimated by single-component dictionary matching with

he same settings as for the BrainWeb simulations. We chose to generate

ynthetic T 1 -weighted images from the same data to have perfect spatial

orrespondence of the MRF and T 1 -weighted data. As such differences

n imaged volume were avoided. Based on the synthetic T 1 -weighted

mages a brain mask was created using FSL-BET ( Jenkinson et al., 2012 ).

Subsequently, the SPIJN-MRF algorithm ( Nagtegaal et al., 2020 ) was

pplied to the MRF data, to obtain multi-component estimations for the
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Table 1 

Ranges used to categorize SPIJN-MRF tissue/material components 

( Bojorquez et al., 2017; Buonincontri et al., 2019; Dvorak et al., 2021; 

Körzdörfer et al., 2019; Mackay et al., 1994 ). 

Name T 1 range (ms) T 2 range (ms) 

White matter (without myelin water) 800–1050 50–100 

Gray matter 1050–1500 50–100 

CSF short T 2 2000–4000 9–300 

CSF long T 2 2000–4000 300–2000 

Myelin water 99–500 9–20 

Veins and arteries 500–2000 200–1200 
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issues present in the brain mask region. The SPIJN-MRF algorithm is

ased on the following optimization function: 

̂
 = 𝑎𝑟𝑔 min 

𝐶∈ℝ 𝑁 𝐴 ×𝐽 
≥ 0 

||𝑋 − 𝐷𝐶 ||2 
𝐹 
+ 𝜆

𝑁 ∑
𝑖 

|||𝐶 𝑖 |||0 , 
Where X are the (compressed) MRF images with J voxels per time

rame, D is the (compressed) dictionary with N A atoms and C consists

f N A tissue fraction maps 𝐶 𝑖 of J voxels. The regularization parame-

er 𝜆 balances the data fidelity and joint sparsity regularization terms.

ulti-component estimations were performed for all slices simultane-

usly. This yielded tissue parameters and magnetization fractions per

oxel. Note that the number of tissues is not fixed a priori, but con-

rolled through a sparseness constraint. A regularization value 𝜆 of 0.03

as used in the multi-component analysis. This regularization level was

anually determined for one in vivo dataset and kept constant with all

ubsequent numerical and in vivo analyses. 

.5. SPM12 and FSL segmentations 

The conventional methods were applied to the synthetic T 1 -weighted

mages (created as described above). FSL-FAST ( Jenkinson et al., 2012 ;

hang et al., 2001 ) was applied after brain extraction (through FSL-BET)

o obtain tissue segmentations while using default settings. SPM12 seg-

entation ( SPM12, 2019 ; Ashburner and Friston, 2005 ) was also used

ith default settings, but the sampling distance was set to 1 instead of

 to produce the most accurate segmentations (at the cost of consum-

ng more time and memory resources). Tissue volumes in a voxel were

alculated by multiplying obtained tissue probabilities in a voxel from

PM12 and FSL with the voxel size. 

.6. Atlas registration 

To facilitate assessment of particular brain regions, all imaging

ata was aligned to the ICBM 152 Nonlinear atlases version 2009

 Fonov et al., 2011 ; Fonov et al., 2009 ). This alignment was based on

he synthetic T 1 -weighted images using the Diffeomorphic Anatomical

egistration through Exponentiated Lie algebra (DARTEL) algorithm

 Ashburner, 2007 ) as implemented in SPM12 ( SPM12, 2019 ). Subse-

uently, the obtained deformations were applied to all SPIJN-MRF,

PM12 and FSL partial volume segmentations to achieve voxel-wise

lignment to the atlas. All subsequent analyses focused on a common

rain region, specifically: the region for which the mean intracranial

olume fraction per voxel (WM + GM + CSF) was at least 75% with all

egmentation methods. 

. Analysis 

.1. Tissue discrimination 

From the SPIJN-MRF parameter estimations, different components

ere identified based on the relaxation times, see Table 1 ( Mackay et al.,

994 ; Körzdörfer et al., 2019 ; Buonincontri et al., 2019 ; Bojorquez et al.,

017 ; Dvorak et al., 2021 ): myelin water, white matter (excluding
3 
yelin water), gray matter, CSF and veins and arteries. CSF was par-

itioned into a short and long T 2 component after inspection of first

esults, as was observed in ( Nagtegaal et al., 2020 ). Simultaneously,

omponents with T 1 and T 2 relaxation times around 1s were identified,

hich we associated with veins and arteries. Total tissue volumes were

alculated by summing the tissue fraction estimates multiplied by the

oxel size (using an effective slice thickness of 6 mm to correct for slice

ap). 

.2. Analysis of accuracy 

The accuracy, i.e. systematic error, of the obtained SPIJN-MRF,

PM12 and FSL segmentations was evaluated using the simulated data.

he agreement between estimated total white matter (including myelin

ater), gray matter and CSF volumes and the reference volumes was

valuated through Bland-Altman style plots. These showed the deviation

rom the reference as a function of reference value. Furthermore, the

oxel-wise similarity between estimated partial volume and reference

as assessed using the Fuzzy Tanimoto Coefficient (FTC) ( Crum et al.,

006 ), which expresses the similarity of paired data as 

 𝑇 𝐶 ( 𝐴, 𝐵 ) = 

∑
𝑖 ∈Ω𝑅𝑂𝐼 

MIN 

(
𝐴 𝑖 , 𝐵 𝑖 

)
∑
𝑖 ∈Ω𝑅𝑂𝐼 

MAX 

(
𝐴 𝑖 , 𝐵 𝑖 

) (Eq. 1)

here A,B is a pair of tissue fraction maps of a complete volume, specific

egion or slice; subscript i represents a spatial index of the concerned

oxels. The FTC is an adaptation of the Jaccard index or Tanimoto co-

fficient for non-binary segmentations. 

.3. Analysis of repeatability 

The repeatability of the SPIJN-MRF method was determined for the

issue parameter estimations and partial volume segmentations on the in

ivo imaging data. 

First, the mean and standard deviation of the SPIJN-MRF relaxation

imes were calculated per subject and tissue over the eight different time

oints. Subsequently, the repeatability was evaluated based on the range

f standard deviations across the subjects per tissue. 

Second, the repeatability of tissue volume estimation of the SPIJN-

RF and conventional methods over the time points was evaluated

oxel-wise, in different brain regions and for the entire brain per tis-

ue. In each case the mean value and corresponding standard deviation

as determined per subject across the time points. The repeatability

as quantified using the Coefficients of Variation (CoV = 

𝜎

𝜇
, where 𝜎 is

he standard deviation and 𝜇 is the mean of the tissue volume over the

 scan sessions) and the Combined Fuzzy Tanimoto Coefficient (CFTC)

 Crum et al., 2006 ) for each subject and tissue 

 𝐹 𝑇 𝐶 ( 𝐴 ) = 

∑# 𝑑𝑎𝑦𝑠 −1 
𝑘 =1 

∑# 𝑑𝑎𝑦𝑠 
𝑗= 𝑘 +1 

∑
𝑖 ∈Ω𝑅𝑂𝐼 

𝑀 𝐼 𝑁 

(
𝐴 𝑘𝑖 , 𝐴 𝑗𝑖 

)
∑# 𝑑𝑎𝑦𝑠 −1 
𝑘 =1 

∑# 𝑑𝑎𝑦𝑠 
𝑗= 𝑘 +1 

∑
𝑖 ∈Ω𝑅𝑂𝐼 

𝑀𝐴𝑋 

(
𝐴 𝑘𝑖 , 𝐴 𝑗𝑖 

) , (Eq. 2)

here 𝐴 𝑘𝑖 denotes the volume fraction of voxel i at day k for a subject

nd tissue of interest. 

.4. Comparison with conventional methods 

Initially, comparison of the methods was performed by visual as-

essment of the segmentation maps. Subsequently, estimated total tis-

ue volumes for the entire brain and per region were compared across

he methods. While doing so, the volume fractions obtained with SPIJN-

RF for white matter and myelin water were summed into a single white

atter tissue. Similarly, the SPIJN-MRF CSF fractions of long and short

 2 times were summed to yield the total CSF partial volumes. CoVs and

FTCs for total brain tissue volumes were calculated including and ex-

luding the slices with motion artifacts to evaluate the effect of these

rtifacts on the repeatability. 
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Fig. 1. Example of partial volume segmentations obtained with multi-component MRF, SPM12 and FSL in simulations based on the central slice of a BrainWeb 

phantom (first column). 
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. Results 

.1. Simulations 

SPIJN-MRF yielded exact estimates of underlying T 1 and T 2 tissue

arameters in all 20 datasets. Fig. 1 shows representative partial vol-

me segmentations obtained with SPIJN-MRF, SPM12 and FSL. Observe

hat the SPIJN-MRF images closely resemble the ground truth with soft

ransitions between tissue and background, while these transitions are

harper in the SPM12 and FSL segmentations. 

Fig. 2 shows Bland-Altman style plots, for each subject, method and

he three tissues of interest, with the deviation from the true total tissue

olume (vertically) as a function of the true value (horizontally). The

ean deviations from the true value are indicated by solid lines. Limits

f agreement are delineated by the light blue regions. 

It can be observed that SPIJN-MRF and FSL showed little bias (de-

ned as only a small deviation from the true value), whereas marked

ias was found with SPM12. All three methods had the lowest bias in

ray matter compared to the other tissues (max 3.3 cm 

3 for SPM12).

PM12 had the largest bias for white matter (mean deviation -78.4 cm 

3 ).

The limits of agreements between the estimated volumes and the

eference values were smaller for SPIJN-MRF than for SPM12 and FSL,

ndicating that the differences between SPIJN-MRF estimations and

he true values vary less than for SPM12 and FSL. SPM12 had the

argest spread in the limits of agreements, which indicates a lower pre-
ision. t

4 
Fig. 3 shows the distribution of FTCs obtained with SPIJN-MRF,

PM12 and FSL. In all the tissues, the segmentations performed by

PIJN-MRF were the most similar to the true segmentations, with FTCs

round 0.97. SPM12 and FSL had lower FTCs: between 0.6 and 0.7 for

hite and gray matter and between 0.5 and 0.6 for CSF, respectively.

egmentations made with FSL had slightly higher FTCs than segmenta-

ions with SPM12. FTCs varied across slices, following a similar trend as

he total amount of tissue per slice (see Supplementary Fig. S1). A fixed

NR level (100) was used in the shown results, in additional experiments

ifferent noise levels led to similar findings as shown in Supplementary

igs. S2–S4. 

.2. In vivo data analyses 

A total of 10 MRF acquisitions (out of 40) were affected by motion

rtifacts in one or more slices. It concerned 3% of the total number

f slices. Computation times were approximately 50 minutes for SPIJN-

RF estimations on a standard desktop pc (Intel i7-8650U CPU 1.9GHz,

GB RAM). 

.2.1. Tissue discrimination 

Fig. 4 shows all components resulting from the MRF data of a sin-

le acquisition across several slices from one representative subject. The

eftmost column shows the T 1 and T 2 values for each of 9 identified com-

onents while the images depict corresponding estimated tissue frac-

ions. 
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Fig. 2. Bland-Altman style plots showing the deviation (vertically) from the true volume in the 20 BrainWeb phantom volumes obtained with the SPIJN-MRF (left), 

SPM12 (middle), and FSL (right) methods. The solid lines indicate the mean deviation in each plot (i.e. the bias), the exact value of which is indicated next to each 

line. Dotted lines reflect the limits of agreement (1.96 times the standard deviation of the bias). Shadowed areas in gray and blue delineate the 95% confidence 

interval of the mean and the limits of agreement respectively. 
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In Fig. 5 , the main component maps and standard deviation (std)

aps (after registration) obtained after grouping as per Table 1 for a

entral slice from the same subject are depicted for each acquisition

ay. Observe that there are minimal differences over time (as reflected

n the std maps in the right column). Global intensity variations can be

bserved in the myelin water map (in particular concerning scans 5 and

 seem to yield higher tissue fractions). However, for the other tissues

he variability is similar across the brain. 

Table 2 collates the means and standard deviations of T 1 and T 2 

elaxation times across all subjects and scans per tissue as well as the

ean intra-subject standard deviations per tissue. On average 8.3 com-
5 
onents were identified over all acquisitions (26 times 8 components,

3 times 9 and 1 time 10). No components were outside the predefined

anges ( Table 1 ). The mean intrasubject standard deviations of myelin

ater and veins and arteries for T 1 estimation and of short CSF for T 2 

stimation was larger than 10% percent of the reported mean value.

or all other tissues the intrasubject standard deviations of T 1 and T 2 

elaxation times showed small variation. After changing the dictionary

anges the observed clipping to the dictionary boundaries appeared per-

istent and visually did not appear to affect the estimated partial volume

aps. Supplementary Fig. S5 shows scatter plots of the estimated T 1 and

 values across subjects and scans. 
2 
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Fig. 3. Box plots showing distributions of the Fuzzy Tanimoto Coefficient (FTC) for white matter (left), gray matter (middle), and CSF (right) comparing the 20 

BrainWeb phantoms and the tissue segmentations using SPIJN-MRF(blue), SPM12 (red), and FSL (green). 

Fig. 4. Multi-component tissue fraction maps for one MRF dataset of a single subject. Obtained T 1 and T 2 relaxation times are shown in the left column. Note that 

the component maps are only estimated inside the brain mask. For illustration purposes only the ten central odd slices are shown instead of the total 28 slices and 

components with a relative volume fraction of less than 1% were not shown. 

6 
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Fig. 5. SPIJN-MRF maps across days and tissue types are for a central slice for one subject after grouping based on relaxation time. Note that the lower two rows 

use a different color range for illustration purposes. Standard deviation maps are shown in the column on the right. 

Table 2 

Means and corresponding standard deviations (std) of estimated T 1 and T 2 relaxation times across all 5 subjects and 8 repeated scans per 

tissue as well as the means of 5 intrasubject standard deviations per tissue. ∗ T 1 or T 2 values are the minimum/maximum value represented 

in the dictionary, which also occured with extended boundaries. 

Tissue 

T 1 (ms) T 2 (ms) 

Mean ± Std across all 

subjects and scans 

Mean intra-subject 

standard deviation 

Mean ± Std across all 

subjects and scans 

Mean intra-subject 

standard deviation 

White matter excluding myelin water 943.4 ± 0.0 0.0 69.2 ± 1.2 2.5 

Gray matter 1383.9 ± 10.8 17.7 62.3 ± 1.2 1.7 

CSF longer T 2 3042.6 ± 0.0 ∗ 0.0 1030.3 ± 0.0 ∗ 0.0 

CSF shorter T 2 3042.6 ± 0.0 ∗ 0.0 149.3 ± 9.4 18.3 

Myelin water 230.7 ± 20.1 34.0 10.0 ± 0.0 ∗ 0.0 

Veins and arteries 876.2 ± 93.9 106.7 1030.3 ± 0.0 ∗ 0.0 

Table 3 

CoVs of the estimated total myelin water volume, white matter volume (including 

myelin water), gray matter volume, CSF volume and total brain volume. The last col- 

umn reports the mean of the CoVs over all subjects. 

Tissue 

Subject 

Mean 
A B C D E 

Myelin water (MW) 13.7% 13.3% 4.4% 13.3% 7.6% 10.5% 

White matter (including MW) 3.8% 6.4% 7.0% 4.7% 8.2% 6.0% 

Gray matter 3.4% 5.5% 8.7% 3.7% 6.6% 5.6% 

CSF 6.4% 6.5% 6.4% 2.1% 1.7% 4.6% 

Brain volume 1.0% 1.7% 1.8% 0.5% 0.7% 1.1% 
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.2.2. Repeatability 

Table 3 presents the CoVs of the total volume estimates of myelin wa-

er, white matter (including myelin water), gray matter, CSF and the to-

al brain volume (WM + GM) across subjects. Total brain volume showed

inor variation (mean CoV = 1.1 %); the volume estimates of CSF, GM

nd WM (including MW) were slightly more variable, with mean CoV
7 
f 4.6%, 5.6% and 6.0%, respectively, while MW by itself had higher

ean CoV (10.5%). 

.2.3. Comparison with brain volume measurement methods 

Fig. 6 illustrates that the SPIJN-MRF tissue maps from the in vivo data

ontained more gradual transitions between brain tissues than the con-
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Fig. 6. A representative slice showing the white matter (top), gray matter (middle) and CSF (bottom) fraction maps obtained using SPIJN-MRF (left), SPM12 (middle), 

and FSL (right) for one single acquisition of one subject (subject B, day 5). Red and green circles point out notable differences in CSF between methods. 
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entional methods, similar to simulated data. For instance, the SPIJN-

RF CSF map shows small details not observed in the other maps (green

ircle) whereas parts are more confined in the SPM12 and FSL segmen-

ations (red circle). Furthermore, the GM SPIJN-MRF component was

lmost always identified as a mixture of GM and CSF or WM compo-

ents (maximal GM fraction around 90%). This highlights the ability of

PIJN-MRF to approximate brain tissue content of partial volume vox-

ls. 

The distributions of total volumes for each subject with SPIJN-MRF,

PM12 and FSL are collated in Fig. 7 . It can be observed that SPM12 es-

imates are lower in white matter than FSL estimates, and consequently,

he opposite is noticeable for gray matter and CSF as the sum of tissue

ercentages is 100% by definition. In general, the estimated volumes

ith SPIJN-MRF appear between the estimated volumes of SPM12 and

SL. Furthermore, the SPIJN-MRF volume distributions show a larger

pread than those of SPM12 and FSL. 

In Fig. 8 , the estimated relative volumes per anatomical region for

ach tissue, method and subject are summarized (see Supplementary

ig. S6 for absolute volumes per region). In general, the three meth-

ds had relatively similar relative volumes per region. However, for the

erebellum and for the deep gray matter FSL gave higher white matter

olume than SPIJN-MRF and SPM12 in all subjects. As a consequence,

SL yielded lower gray matter volumes. 

Fig. 9 shows CFTCs (upper row) and CoVs (lower row) for the

otion-artifact-free data and the full dataset across the subjects and the
issues. C  

8 
The SPM12 yielded slightly higher CFTC than SPIJN-MRF in white

nd gray matter in all subjects. SPIJN-MRF gave higher CFTCs compared

o both SPM12 and FSL in CSF, which was observed consistently across

lices (see Supplementary Fig. S7). Also, the CoVs of SPM12 and FSL

ere distinctly lower than those of SPIJN-MRF for white and gray mat-

er, whereas differences were smaller for CSF and total brain volume. 

The CoVs for SPIJN-MRF were lower using the data without motion

rtifacts than with all data in all tissues but one in subjects C and D, and

. The only exception was in subject E, in which the white matter score

as barely affected. 

We did not observe a particular trend in the CFTCs nor in the CoVs

f the motion-artifact-free data related to anatomical region nor any

pecific differences between left/right brain regions (see Supplementary

ig. S8). 

. Discussion 

This paper aimed at evaluating the accuracy and repeatability of the

oint sparsity based SPIJN-MRF estimations ( Nagtegaal et al., 2020 ). The

esults show that it yields accurate brain tissue voxel fraction estimation

n simulated data (mean systematic errors between 2cm 

3 and 6cm 

3 and

uzzy Tanimoto Coefficient above 0.95) and gives good repeatability in

n vivo data (Fuzzy Tanimoto Coefficient above 0.7 and mean (across

ubjects) CoVs between 5.7% and 6.1%). 

In simulations, we observed that the white matter, gray matter and

SF fraction maps obtained with SPIJN-MRF had smaller systematic er-
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Fig. 7. Box plots showing for each subject the total volume of the white matter (top-left), the gray matter (top-right), the CSF (bottom-left), and the total brain 

(bottom-right) estimated using SPIJN-MRF (blue), SPM12 (red) and FSL (green). 
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ors than those obtained with SPM12 and FSL in both total volume es-

imation as voxel-wise similarity. 

The T 1 and T 2 values obtained by SPIJN-MRF from the in vivo data for

ach component were very stable for all the acquisitions and in the range

f previous quantitative studies ( Mackay et al., 1994 ; Bojorquez et al.,

017 ; Stanisz et al., 2005 ; Alonso-Ortiz et al., 2015 ; Bouhrara and

pencer, 2017 ). The observed standard deviation of zero for WM derives

rom the dictionary resolution (which is 5% for T 1 values) and resulted

rom repeated selection of the same dictionary atom. Previous studies

ave reported variations in T 1 below 5% ( Nunez-Gonzalez et al., 2021 ;

uonincontri et al., 2019 ). Unexpectedly and contrary to the single-

omponent estimations, we found that the T 2 value from the white mat-

er component was slightly longer than the T 2 value found for the gray

atter (see Table 2 ). This can be partly due to the attribution of myelin

ater (having a very short T 2 time) to a separate component indepen-

ently of white matter, whereas values reported in the literature for

hite matter commonly include myelin water In effect, this will lead to

onger relaxation values for the ‘pure’ white matter component, merely

s a shorter time component is left out. Previously, a thorough study of

he T 2 distributions in the brain indeed demonstrated that T 2 distribu-

ions are affected by properties of the spaces between myelin sheaths

 Whittall et al., 1997 ). 

Furthermore, CSF was consistently represented by two different com-

onents, one with longer T 2 (around 1 s) and one with shorter T 2 

around 150 ms). This separation could be caused by the choroid plexus

ithin the ventricles or by flow effects. The identification of the veins and

rteries component as shown in Fig. 5 was not observed before in multi-

omponent relaxometry to our knowledge. This component had high T 1 

nd T 2 times (both around 1s) and consistently appeared in all subjects

nd scans. Further research into physiologically understanding of this

uid-like component would be an interesting direction for future work.
9 
Estimated T 1 relaxation times showed a very high repeatability, but

or some components the maximum T 1 value of the dictionary was se-

ected. The use of a maximum T 1 value of 6s instead of 3s did not affect

his biasing effect (data not shown here) and was therefore not used

ny further. For better estimation of T 1 relaxation times in CSF a differ-

nt MRF sequence and dictionary range would probably be required to

mprove discrimination between long T 1 components. 

The consistent estimation of a separate myelin water fraction (MWF)

ap with the SPIJN-MRF approach could be useful, e.g. for assess-

ent of multiple sclerosis as well as other white matter diseases

 Mackay et al., 1994 ). A comparison to other MWF estimation methods

 Piredda et al., 2021 ) would be needed to further validate our technique,

lthough differences between methods are known ( Alonso-Ortiz et al.,

018 ; Dvorak et al., 2021 ). 

A SPIJN regularization of 0.03 was used in the analysis resulting in

eproducible estimates. We observed that changes from 0.025 to 0.035

ed to only small changes in MW and veins/arteries component relax-

tion times and volume fractions, while WM/GM/CSF were less affected

y the regularization. The required regularization will be affected by the

NR level and might therefore require adaptation for different scanners,

equences, or reconstructions. 

The study on the repeatability of the SPIJN-MRF yielded CoVs <

0% for the total white matter volume (including myelin water), the

ray matter volume and the CSF volume for all subjects. This variation

f the estimated volumes with the SPIJN-MRF is similar to the variation

ound previously with commonly accepted methods, such as SPM12 and

SL ( Tudorascu et al., 2016 ; Klauschen et al., 2009 ). The estimation of

he myelin water volume showed more variation (average CoV = 10%)

han other tissues. The repeatability was similar across the whole brain,

ven though we applied a rather large slice thickness.This signifies the

obustness of the method also in regions with large susceptibility vari-
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Fig. 8. Mean relative volume for each subject over time (dots) and associated standard deviation (vertical lines) for different anatomical regions of the white matter 

(left), the gray matter (middle), the CSF (right) estimated using SPIJN-MRF (blue), SPM12 (red) and FSL (green). 

10 
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Fig. 9. Combined Fuzzy Tanimoto Coefficient and CoV of estimated total volumes for each subject for white matter (including myelin), gray matter, CSF and total 

brain (white matter plus gray matter) obtained with SPIJN-MRF (blue), SPM12 (red), and FSL (green). Results from the data without motion artifacts are depicted 

using circles and solid lines, results obtained using all data are depicted with squares and dashed lines. 
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tions such as in areas with air (frontal part) or areas with more iron

deep gray matter). 

The closer resemblance of the SPIJN-MRF maps to the reference in

he simulations was reflected in higher FTC values with smaller standard

eviations compared to the conventional methods. Especially in the CSF

aps (both in simulation and in vivo ), more details of the anatomy were

isible with the SPIJN-MRF method than with SPM12 and FSL. These re-

ults could indicate that SPIJN-MRF improves measuring partial volume

roperties of smaller brain structures. Furthermore, compared to SPM12

nd FSL it may provide new information, such as the myelin water frac-

ion. To validate the high accuracy in simulations, further investigation

nto the in vivo accuracy should be performed. Currently we considered

his outside the scope of our in vivo study, which mainly focused on the

epeatability of SPIJN-MRF. Post-hoc, we performed as a preliminary

pproach to an accuracy evaluation, a small follow-up study one of the

ubjects that was rescaneed four times indicating similar performance

n volume estimation of SPIJN-MRF compared to conventional SPM12

nd FSL segmentation using conventional, high resolution T 1 -weighted

cquisitions (see Supplementary Fig. S9). Furthermore, FSL and SPM12

ecommend using T1w-MPRAGE for segmentation, while our simulated

mages were created based on a spoiled FLASH sequence as was used for

he BrainWeb simulations. Although the resulting images have a very

imilar contrast (see Fig. S10), the set of parameters for the synthetic

 1 -weighted images can be optimized further and the reported accuracy

ight be slightly affected by the generated contrast. 

SPM12 uses a probability atlas with anatomical information to seg-

ent the brain tissues, which could enhance the repeatability of results

ut potentially also introduces a bias. FSL uses a hidden Markov ran-

om field model and an expectation-maximization algorithm to obtain

obust results with improved denoising, but this might lead to removing

mall brain structures. Instead, the joint sparsity multi-component MRF

odel does not incorporate explicit spatial regularization or anatomical

 priori knowledge. 

Differences in estimated brain tissue volumes between SPM12 and

SL were already previously reported ( Tudorascu et al., 2016 ). Our

stimated volumes for FSL are higher in white and gray matter and

ower in CSF compared to SPM12 with the simulated data just as in

lauschen et al. (2009) . Contrary to the simulated data, the estimated

otal brain volumes for the in vivo data by SPIJN-MRF are closer to the

stimated volumes from SPM12 than those from FSL. Also, the relative

olume per region calculated by SPIJN-MRF is closer to the relative vol-

me calculated by SPM12 than FSL for the in vivo data. This could be

aused by intrinsic differences between the T 1 -weighted brainweb im-
11 
ges (used in the simulations) and the MRF based T 1 -weighted images

used in the in vivo experiments). The differences in the contrast could

esult in slightly different classification of the voxels and affect the local

artial volume estimates. 

In contrast to the simulations, the CoVs of SPIJN-MRF for in vivo data

eflected higher variability than those of SPM12 and FSL for almost all

ubjects and tissues. The low variability of SPM12 and FSL, also in com-

arison with previous studies ( Tudorascu et al., 2016 ; Klauschen et al.,

009 ), could be due to the use of synthetic images. This is because the

uantitative parameters (M 0 , T 1 and T 2 ) from MRF were highly repeat-

ble, differing only between 0 and 2% amongst all the acquisitions. As a

onsequence the resulting synthetic T 1 -weighted images are also highly

imilar. This likely biases the repeatability of the SPM12 and FSL seg-

entations. We chose to create synthetic T 1 -weighted images in order

o have perfect spatial correspondence of the data. As such differences

n imaged volume were avoided. 

SPM12 and FSL demonstrated to be slightly more robust against mo-

ion artifacts than SPIJN-MRF, resulting in minimal differences in CoV

nd FTC when using data without and with motion artifacts. Although

otion effects were observed in a relatively small number of slices, it did

ffect the volume estimates. Simultaneously, however, estimated T 1 and

 2 relaxation times were not affected by motion affected slices. Never-

heless, our results show that efforts to minimize the impact of subject-

otion in the MRF data may enhance in particular the repeatability,

.g. by applying motion-correction ( Cruz et al., 2019 ) or 3D-acquisitions

ith possible use of navigators ( Johnson et al., 2011 ) or self-navigations

 Kurzawski et al., 2022 ). 

A limitation of this work is that the evaluation of accuracy was

ostly done on simulated data (see Figs. 2 , 3 and Supplementary Fig.

9). Further validation of segmentation accuracy could be performed,

or example by assessment of the segmentations through expert neuro-

adiologists. Future work could also take into account other potentially

elevant aspects in the simulations, such as: reconstructions from under-

ampled data, modeling of B 0 or B 1 
+ inhomogeneities, representation of

he presence of myelin water or inclusion of other biological phenomena

uch as magnetization transfer or flow. 

Another limitation could be that we did not include B 1 
+ field inho-

ogeneity as a parameter in our SPIJN-MRF estimation. B 1 
+ inhomo-

eneity might affect the SPIJN-MRF parameter estimation and especially

WF estimation. However, we did not observe particular spatial vari-

tions in the obtained fraction maps that appear to resemble smoothly

arying B 1 
+ inhomogeneities. Further research (including an acquired

 1 
+ map) would be needed to explicitly study the effect of B 1 

+ and to
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nalyze the potential benefits of accounting for B 1 
+ variation in the es-

imation of the tissue fraction maps. 

Furthermore, optimizing the MRF sequence for multi-component

RF estimations ( Heesterbeek et al., 2021 ) to make it more sensitive

o myelin water or to improve the distinction between gray and white

atter could lead to further improvement of estimations, reduced scan

imes or the possibility to use a reduced slice-thickness. However, we

onsider the implementation of such optimization beyond the scope of

ur current paper. 

. Conclusion 

We studied the accuracy and repeatability of the SPIJN-MRF method

n simulations and in vivo brain MRI scans. SPIJN-MRF showed more

ccuracy and higher repeatability in simulated data than conventional

ethods (SPM12 and FSL). In the in vivo data, SPIJN-MRF consistently

dentified the same brain tissue components and gave highly repeat-

ble relaxation times related to these tissues. SPIJN-MRF partial vol-

me maps showed small details, also in CSF. The repeatability of the

stimated brain tissue volumes of SPIJN-MRF was somewhat lower com-

ared to SPM12 and FSL, possibly due to simulation bias . A further ad-

antage of using SPIJN-MRF is the additional simultaneous estimation

f MWF maps, which is not obtainable with single compartment-based

ethods. 
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ppendix I 

The acquired MRF data was reconstructed using an in-house created

ow-rank reconstruction algorithm, solving 

 , 𝑈 = argmi n P , U 
∑
𝑐,𝑗 

|||𝑆 𝑗,𝑐 − 𝐹 𝑗 𝐶 𝑐 𝑃 𝑈 𝑗 
|||
2 

2 
+ 𝑅 ( 𝑃 ) 

here 𝑃 ∈ ℂ 

|Ω𝑋 | × 𝑁 is a matrix containing the N low-rank component

mages of spatial dimension |ΩX |, which is the compressed represen-

ation of the MRF series; 𝑃 ∈ Ω𝑁×1000 contains the 𝑁 time components

ased on which the MRF signal is compressed, i.e. the time-compression

atrix, and 𝑈 𝑗 ∈ ℂ 

𝑁 is a particular column from this matrix for con-

rast weighting j (thus, 𝑥 = 𝑃 𝑈 𝑗 is the reconstructed contrast image 𝑗

rom the MRF series); 𝑆 𝑗,𝑐 ∈ ℂ 

|Ω𝑗 | is the acquired undersampled data of

RF contrast weighting j of coil c; 𝐶 𝑐 ∈ ℂ 

|Ω𝑋 | × |Ω𝑋 | is a diagonal ma-

rix specifying the sensitivity of coil c; 𝐹 𝑗 ∈ ℂ 

|Ω𝑗 | × |Ω𝑋 | represents the

on-uniform Fast Fourier transform ( Fessler and Sutton, 2003 ) for con-

rast weighting j. Furthermore, 𝑅 ( 𝑃 ) = 

∑
𝑋 

√ ∑
𝑖 
𝑃 2 
𝑥,𝑖 

, i.e. the spatial

1 norm of the L2 norm across the component images, is applied for

egularization purposes. 

The equation was solved by three iterations of a block coordinate

escent optimization, alternating the optimization between U and P. 

The initial time compression matrix U was constructed from the first

 singular vectors obtained through SVD of a dictionary precomputed

s described in ‘Methods’ in the subsection ‘Single and multi-component

arameter estimation’. After this, initial-images were created by subse-

uently applying to 𝑆 𝑗 : a density compensation, an adjoint non-uniform

ourier transformation, and a projection to the subspace with the initial

. Then, using the first subspace component derived from the initial-

mages, the cross-correlation matrix among the 12 acquired channels

as computed for each voxel. The output was a matrix of 12 by 12 im-

ges which were filtered using a box blur filter of size 5, resulting in a

odified correlation-among-channels matrix for each voxel. Each voxel

f the coil sensitivity maps ( 𝐶 𝑐 ) was created from the first singular vec-

or of its modified correlation-among-channels matrix. The initial 𝑃 was

reated by the projection of the initial-images on 𝐶 𝑐 . In subsequent iter-

tions the explicit least squares solution for 𝑈 𝑗 was computed followed

y ortho-normalization. Subsequently, the subproblem for P was solved

y the conjugate gradient algorithm, where R(P) was approximated by

ts tight quadratic overbound ( Fan and Li, 2001 ). 
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