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Abstract 

Gravity has significant effects on alloy solidification, primarily due to thermosolutal 

convection and solid phase buoyancy. Since 2004, the European Space Agency has been 

supporting investigation of these effects by promoting in situ X-ray monitoring of the 

solidification of aluminium alloys on microgravity platforms, on earth, and in periodically 

varying g conditions. The first microgravity experiment – investigating foaming of liquid 

metals – was performed on board a sounding rocket, in 2008. In 2012 the first ever X-ray-

monitored solidification of a fully dense metallic alloy in space was achieved: the focus was 

columnar solidification of an Al-Cu alloy. This was followed in 2015 by a similar experiment, 

investigating equiaxed solidification. Ground reference experiments were completed in all 

cases. In addition, experiments have been performed on board parabolic flights – where the 

effects of varying gravity have been studied. We review here the technical and scientific 

progress to date, and outline future perspectives.     
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Introduction 

 

The microstructure and resultant properties of light alloys, as with many other metallic alloys, 

may be determined during a solidification process along the manufacturing route. Traditionally, 

solidification science, as applied to metals, has included theory and computational modelling, 

but experimental observation of the progress of solidification (nucleation, growth and 

impingement of crystalline grains) was not possible due to the opacity of metals. As a result, 

validation of theory and computational models was mostly limited to post-solidification 

metallography. However, nearly 20 years ago pioneering researchers began to use high 

brilliance X-rays at large-scale synchrotron facilities – such as the European Synchrotron 

Radiation Facility (ESRF) in Grenoble, France – to observe the progress of solidification in 

alloys which provided sufficient transmission contrast between solid and liquid phases [1,2]. 

Al-Cu, Al-Ni or Al-Ge have proven to be popular alloy systems for such research. Important 

gravitational effects such as buoyancy and motion of equiaxed grains [3,4] and fragmentation 

of columnar dendrites [5] were observed in situ, providing a challenge to computational 

modellers to simulate such behaviour accurately. 

In order to study gravitational effects, such as buoyancy and thermosolutal convection, it is 

best to compare experiments with and without the effects of gravity. The latter, however, can 

only be achieved in microgravity conditions – such as those in free-falling environments or in 

space. So the European Space Agency (ESA), near the start of the millennium, considered 

supporting a scientific community to use X-rays to study alloy solidification in microgravity 

conditions. This would require the development of specialised and compact equipment, 

consisting of X-ray source, solidification furnace, camera and detectors, which could be 

deployed on board microgravity vehicles. Along with feasibility studies on hardware, ESA 

started an academic Topical Team network of interested scientists and engineers, in 2004, to 

start planning experiments. Candidate microgravity facilities (with microgravity period) 

included parabolic flights (seconds), sounding rockets (minutes) and the International Space 

Station (days). Although the ISS has been used for alloy solidification experiments, e.g. [6-8], 

it has not yet hosted in situ X-ray experiments. The research consortium to date, which includes 

the authors, has concentrated on unmanned sounding rocket and manned parabolic flights. The 

sounding rockets, with many minutes of microgravity time, are particularly suited to 

solidification studies at ~0 g. Parabolic flight campaigns, on the other hand, provide about 20s 

of microgravity per altitude parabola, but each such period is directly preceded by hypergravity 

periods of about the same duration but in which ~2g conditions are reached [9]; such flights 

are therefore suited to research on the effects of g variation on phenomena of interest. The 

current contribution selects some highlights from the ESA sounding rocket and parabolic flight 

campaigns. The programme of research is known as XRMON: in situ X-ray monitoring of 

advanced metallurgical processes under microgravity and terrestrial conditions. Hardware 

developed during the research is given the XRMON label.  
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Sounding Rocket Experiments 

 

ESA has sponsored a series of MASER (Material Science Experimental Rocket) sounding 

rocket flights to support the alloy solidification research. MASER is a sub-orbital microgravity 

research rocket that is launched by the Swedish Space Corporation from Esrange in northern 

Sweden. The rocket can provide between 6 and 7 minutes of high quality microgravity, 

depending on weather conditions. 

MASER 11: Foaming of Metals 

Metallic foams are very promising materials for certain industrial applications due to their 

extraordinary properties like low density, high energy absorption, high specific strength and 

stiffness, damping, etc. [10]. However, large-scale production has been hindered by an 

incomplete understanding of the processes by which metal foam melts stabilize and solidify, 

and how these processes influence the final structure of the foam. This is still a major challenge, 

as examining the molten system in situ and verifying proposed mechanisms requires 

sophisticated experimental set-ups. 

The flow of liquid metal, due to gravity, induces changes in foam density distribution. This 

affects foam evolution by influencing, for instance, the thinning of cell walls which in turn 

induces cell wall ruptures as is known in the case of aqueous foams [11]. Under microgravity 

we can separate some of the key effects which govern foam evolution, namely drainage, flow, 

coarsening and coalescence in order to improve models of the foaming metals.  

An X-ray transparent foaming furnace combined with an in situ X-ray imaging system was 

designed and constructed by the Swedish Space Corporation, and launched successfully in the 

XRMON module of MASER 11 in May 2008. The microgravity foaming setup comprised a 

80 kV microfocus source, the foaming furnace and a flat panel detector. The furnace was nearly 

X-ray transparent. Inside the heating zone was situated the crucible, with inner dimensions of 

20 x 20 x 10 mm3. It was machined from one piece of boron nitride together with a closing lid. 

A Pt wire wound around the BN crucible allowed heating of the sample up to 700 °C. 

Thermocouples were placed on the crucible walls to record the temperature profile. The sample 

foaming procedure and the heating profile, from the starting point of heating until the switching 

off of the heater, were completely automatic and followed the profile pre-set before the 

experiment. 

 

The sample precursor was a foamable thixocast Al- 6.0wt.%Si - 4.0wt.%Cu + 0.5 wt.% TiH2 

alloy, of dimensions 20 x 10 x 4 mm3. It expanded in the course of heating to 600°C at a rate 

of 200 K/minute to around 5 times its volume, completely filling the crucible with foam. This 

is caused by the melting of the alloy and the parallel action of the gas source provided by the 

blowing agent TiH2.  

 

During MASER 11 a homogeneous wet metal foam with round pores and without collapse 

could be produced; Fig 1. There was no gravity-induced drainage but an unexpectedly strong 

coalescence rate. This sounding rocket mission allowed us to study for the first time cell 
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coarsening under microgravity. We discovered for metallic foams, besides the expected effect 

of gravity-induced drainage and cell wall thinning, the pronounced effect of the blowing agent 

on coalescence, influencing foam stability considerably in terms of cell wall ruptures [12,13]. 

As a consequence we concentrated in the past years on the development of foams free of 

external blowing agents following the powder metallurgical route, such as AlMgCu or AlMgZn 

alloys. The gas source is intrinsic in these foams, i.e. included in the alloy powders, leading to 

improved gas nucleation. Two patents followed this work and related research carried out on 

ESA parabolic flights. 

 

 

Figure 1. Thixo AlSi6Cu4 sample after 200 s in the liquid state foamed (a) on Earth and (b) during 

the MASER 11 flight. On Earth liquid flow due to gravity-induced drainage leads to higher foam 

density at the bottom of the sample (darker region) and thinner cell walls in the top part, which 

induce increased bubble rupture. Under microgravity an homogeneous wet metal foam with round 

pores can be produced. 

 

MASER 12: Columnar Solidification 

A novel facility was developed for the study of directional solidification of aluminium – based 

alloys, with in situ X-ray radiography on board microgravity platforms. This new facility, 

named XRMON-GF (GF for Gradient Furnace), was successfully deployed during the MASER 

12 sounding rocket campaign, in spring 2012 [14,15].  

The experiment 

The gradient furnace is of Bridgman type, with two heaters: one for the “hot” zone and one for 

the “cold” zone, which can be adjusted independently. This enables directional solidification 

with thermal gradients within the range of 1-10 K/mm and solidification of the sample is made 

by cooling the heaters. The Al - 20wt% Cu sample was 5 mm in width, 50 mm in length and 

150 μm in thickness. More details of XRMON-GF are available elsewhere [14,15]. 
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For the X-ray radiography system, a microfocus X-ray tube with 3 μm focal spot was used, 

with two peaks in energy at K = 17.4 keV and K = 19.6 keV, which are adapted to Al – 20 

wt% Cu alloys. The effective spatial resolution is about 4-5 m, which is satisfactory for 

studying evolving solidification microstructures. 

The MASER 12 sounding rocket was launched on 13 February 2012 at Esrange, Sweden. Since 

the microgravity duration during a MASER sounding rocket is limited to six minutes, a suitably 

adapted experimental timeline was defined [14]. After a short stabilization period (about 20s), 

the sample solidification was triggered by applying successively three increasing cooling rates 

to both heaters (0.15 K/s  0.7 K/s  ≈ 3 K/s). Two ground-reference tests were carried out 

with the same experimental profile and on a fresh sample, for two different sample orientations: 

in the first reference test, the growth direction was perpendicular to the gravity vector, while it 

was parallel and in the opposite direction to the gravity vector in the second ground-reference 

test. 

 

Results 

Figure 2 displays three sequences, of three images each, taken during the solidification of an 

Al - 20 wt% Cu alloy in microgravity conditions (first row), and for the two reference 

experiments at normal gravity (second and third rows). These sequences of radiographs show 

the time evolution of the interface pattern during the slowest cooling rate (R = 0.15 K/s), with 

a temperature gradient of about 15 K/mm between the heaters. The sample in the field of view 

(FoV) was fully liquid at the end of the melting phase and then nucleation of the first solids 

occurred below the field of view. After a while, dendrite tips appeared at the bottom of the FoV 

(left column in Fig. 2) and formed a very disordered dendritic pattern (second column in Fig. 

2). Gradually, the grain competition gave a more regular array of dendrites (third column in 

Fig. 2). 

During the columnar solidification in microgravity conditions and for a horizontal sample, 

nucleation of equiaxed grains ahead of the columnar front is visible, most likely on a small 

heterogeneity of the sample oxide layer. This grain slightly rotated during the solidification, 

which clearly showed that they were not stuck on the sample walls. However, due to either the 

microgravity environment or the horizontal position of the sample, those grains remained at 

the same altitude and were progressively engulfed by the columnar front and then completely 

merged into the columnar microstructure. 

For the upward solidification experiment, the most important feature is the multiple 

fragmentations in the dendritic tip region, at the top of the columnar front (bottom row, right 

column in Fig. 2). After their detachment, most fragments moved upward due to the buoyancy 

force since, in the case of Al - 20wt% Cu alloys, the solid density is lower than the density of 

the surrounding liquid [16]. Some of those fragments were free to float to the hot region of the 

sample (indicated by white arrows in Fig.2). During their upward motion, the size of the 

dendrite fragments decreased because they gradually melted, forming a final white cloud, 

which corresponded to the melting of the aluminum-rich dendritic fragment. It is worth noting 

that these dendrite fragments could not promote columnar-to-equiaxed transition [17-19] or 

CET, because they were carried up far into the liquid where they were re-melted. In addition, 

a strong segregation along the sample occurred during solidification because all Al-enriched 
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dendrite fragments were transported by buoyancy forces into the upper part of the sample and 

mixed in the liquid phase after melting. For the sake of completeness, it worth mentioning that 

the dendrite fragmentations were also observed during the 1g-horizontal and µg experiments, 

but in these cases deep in the mushy zone. After their detachment, the dendrite fragments 

moved towards the cold part of the mushy zone, probably carried by the liquid movement due 

to the sample shrinkage [18]. 

 

 

 

 

 

Figure 2: Columnar solidification of Al-20wt.% Cu with a temperature gradient of about 150 K/cm 

between the two heaters and a cooling rate of 0.15 K/s on both heaters: (a-c) in microgravity 

conditions, (d-f) sample in horizontal position, (g-i) sample in vertical position (reference time is 

arbitrary). During upward solidification, after their detachment from the primary trunks, some 

dendrite fragments were free to float to the hot region of the sample (white arrows in Fig.2h and 2i).  

 

Based on the radiographs, it was possible to measure the growth rate as a function of time for 

each experiment (Fig. 3). For each experiment, a representative dendrite well-oriented with 

respect to the temperature gradient, close to the centre of the sample and that crossed the whole 

height of the FoV, was chosen and its tip position was measured as a function of time. In each 

case, the three successive growth rates are clearly visible and an average value can be deduced. 

The values of the growth rate for the microgravity experiment (Fig. 3a) are closer to those of 

the 1g-upward solidification (Fig. 3c) than to those of the 1g-horizontal solidification (Fig. 3b), 

in spite of the multiple fragmentations which occurred during 1g-upward solidification. 

(i) (g) (h) 

  

t1 = 35 s t1 = 64 s t1 = 88 s 

(c) (b) (a) 

1 mm 
   

t1 = 34 s t1 = 77 s t1 = 99 s 

(e) (f) (d) 

  

t1 = 34 s t1 = 64 s t1 = 106 s 
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Figure 3: (right column) Front position as a function of time showing the three successive growth 

rates for (a) the microgravity, (b) 1g-horizontal solidification and (c) 1g-upward solidification. On 

the radiograph at the left of every plot, a yellow arrow indicates the dendrite chosen for measuring 

the position of the solidification front as a function of time. 

 

This observation can be explained by considering the fact that solidification in the 1g-upward 

case is performed in both stable thermal and solutal conditions (hot zone placed above the cold 

zone and solute denser than the solvent), which minimise the occurrence of natural convection, 

in particular for high axial temperature gradient and high solidification velocities like in these 

experiments. Actually, it has been shown that high values of these two control parameters 
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prevent convective flow induced by residual transverse temperature gradient in this 

configuration [20]. 

On the other hand, for the sample solidification in 1g-horizontal position, the convective roll 

induced by thermal convection and/or the rejection of heavy solute within the thickness of the 

sample may be strong enough to modify the thermal or the solutal fields, thus increasing the 

growth rates. Indeed, in the case of horizontal Bridgman growth, thermal convection occurs as 

soon as there is a temperature gradient along the sample (i.e. no threshold). This qualitative 

explanation was confirmed by an order of magnitude analysis performed by Nguyen-Thi et al 

[21]. 

 

Conclusions 

The MASER 12 solidification experiment was the first solidification experiment with in situ 

and real-time characterization by X-ray radiography on metallic alloys in microgravity 

conditions. The results obtained during the MASER 12 mission, as well as the two ground-

reference tests, were very promising and validated the experimental set-up in terms of thermal 

behavior and X-ray imaging, which were very challenging issues at the beginning of the 

project. From a scientific point of view, these results demonstrate the capability of the X-ray 

device developed in the frame of the XRMON project to provide a real-time diagnostic 

technique during solidification or melting of Al- based alloys. 

 

MASER 13: Equiaxed Solidification 

 

Due to the unconstrained nature of equiaxed solidification, buoyancy effects can be significant. 

To achieve equiaxed solidification which is evenly distributed across the FoV, a locally 

spatially isothermal sample is needed. These conditions were nearly achieved by setting the 

hot and cold sections of the XRMON-GF [14] to the same temperature. In terrestrial 

experiments, using grain-refined Al-20wt.% Cu, we demonstrated the effects of gravity by 

altering the orientation of the sample with respect to gravity. For the horizontal sample, gravity 

effects were minimal, but grain buoyancy effects were dramatic with the sample plane vertical 

[22]. Due to the nature of XRMON-GF, however, nucleation events were not randomly 

distributed throughout the FoV but a front of equiaxed grains moved across from one side of 

the sample (see Fig. 2 of [22]). As a result it was decided to design and build a new furnace 

which could create more isothermal conditions in the sample. 

The new furnace, XRMON-SOL, was designed to have rotational symmetry, and the samples 

were thin discs. The furnace and equipment, designed to fit within the MASER experimental 

module, are described in detail in [23], and shown in Fig. 4. The isothermality of the new 

system was excellent, as attested to by the even equiaxed solidification achieved, and the 

furnace was tested within the MASER sounding rocket module to prove the hardware for the 

space flight [23]. The test schedule was synchronised with the rocket time-line so that the 

sample was completely melted, and re-solidified, within the notional microgravity window. 

Although the effects of gravity were minimised using a horizontal sample orientation, the 

results suggested that such effects could only be eliminated in a microgravity environment.  

 

(a) 
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Figure 4: Schematic illustration of XRMON-SOL construction and integration with in situ X-ray 

diagnostics. Labels T1→8 indicate the relative location and arrangement of eight independently 

regulated heater coils. Dimensions d and w denote the sample diameter (21 mm) and thickness (0.2 

mm), respectively. FoV x-axis and y-axis represent the physical extent of the X-ray field of view 

relative to the sample diameter, horizontally (~ 4.1 mm) and vertically (~ 2.7 mm), respectively. 

Following proving of the XRMON-SOL capability, it was incorporated into the MASER 13 

rocket, which launched on 1 December 2015. Prior to launch, and using the flight sample in 

the flight furnace, a ground reference test was performed, with the sample in horizontal 

orientation. The microgravity flight, and the solidification experiment, were successfully 

completed as planned. The X-ray video sequence has been published openly, along with a 

report of the experiments [24]. Figure 5 shows an image from the sequence. The microgravity 

results were compared to the ground reference ones. Because the sample was horizontal in the 

terrestrial reference case, the differences between the two experiments were small; similar 

nucleation distribution, dendrite growth rates and final eutectic solidification were observed in 

both. However in microgravity the equiaxed grains were completely immobile during the 

majority of their growth [24] – in comparison to gravity-driven motion and rotations of some 

grains in the ground experiment which are currently being quantified, along with the evolution 

of the solutal fields, using an approach developed by Becker et al. [25]. Towards the end of 

solidification, in both experiments, grains moved due to solidification-induced shrinkage and 

interdendritic flow of the liquid phase.   

 

Fig. 5: still image form the MASER-13 microgravity experiment, furnace temperature = 582 oC  
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The results provide, for the first time, benchmark data for computational modelling of equiaxed 

metallic alloy solidification in a gravity-free environment, and isolate shrinkage effects so that 

they are the only cause of grain motion towards the end of solidification.  

MAXUS 9: Diffusion in Liquid Metals 

A special furnace, XRMON-DIFF, is currently being tested for flight on the MAXUS sounding 

rocket, which is larger than the MASER one, with a higher apogee enabling about 12 minutes 

of microgravity time. The experiment will be on diffusion in liquid metals in the absence of 

natural convection, and launch is planned for 2017. 

Chemical diffusion coefficients of liquid alloys are important input parameters for modelling 

microstructure evolution during solidification. Traditionally, measurements have been carried 

out by post-mortem analysis of melted, annealed and solidified diffusion couples leading to 

large uncertainties in the data. A major improvement is the use of the rather sophisticated shear-

cell technique [26] which enables melting of the different alloys separately and separating of 

the liquid column into individual slices prior to cooling. Experiments were even carried out 

under microgravity conditions to avoid buoyancy convective-flow [27]. However, 

uncertainties in the data can still often exceed 30%. In recent years by in situ monitoring the 

diffusion process using X-ray radiography the accuracy of the data has been greatly improved 

[28].  Using a linear shear-cell technique even materials that sediment on melting or that show 

largely different melting and liquidus temperatures can be handled [29,30]. The shear-cell was 

successfully operated aboard the DLR sounding rocket MAPHEUS-4 in the MIDAS-M setup 

investigating the influence on cross correlations on interdiffusion in Al-rich Al-Ni alloys [31]. 

By implementing a newly developed ultra-high temperature shear-cell chemical diffusion in 

binary Al-Ti and Si-Ge alloys will be investigated aboard MAXUS-9 in spring 2017 using the 

XRMON-DIFF MAXUS-9 setup. Results will be reported in a later publication. 

 

Parabolic Flight Experiments 

 

ESA parabolic flight campaigns were carried out on board a specially converted Airbus A300 

commercial turbofan aircraft, operated by Novespace in Bordeaux, France [9]. The 

experiments are manned by the scientific investigators during the flights, each of which 

consists of about 30 parabolas. The findings of some of the XRMON campaigns are presented 

here. 

 

Parabolic Flight experiments: columnar solidification 

Directional solidification experiments on refined Al – 20 wt% Cu and refined Al – 10 wt% Cu 

samples were carried out during several ESA Parabolic Flights (PF) campaigns. The succession 

of periods with different gravity levels offered by parabolic flight allowed the investigation of 

the impact of the effects of gravity level variations on the columnar-to-equiaxed transition. The 

influence of these gravity level variations on the CET was investigated using in situ and real-

time X-ray radiography. 
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Experiment  

Experiments were carried out in a dedicated apparatus entitled XRMON-PFF (Parabolic Flight 

Facility) [32] for a wide range of cooling rates and a constant temperature gradient. This facility 

is simply a duplicate of the XRMON-GF used during the MASER-12 experiment, which has 

been adapted to the Airbus A-300 and then A-310 (Fig. 6a). Solidification is induced by the 

power-down method, which consists of applying the same cooling rate on both heater elements 

to keep a constant temperature gradient during the process. X-ray radiography was successfully 

used to observe the microstructure evolution following the variations of gravity level. The 

solidification of two samples were carried out, an Al – 20 wt.% Cu sample and Al – 10 wt.% 

Cu sample, both inoculated with AlTiB grain refiners. The sample dimensions were 50 mm in 

length, 5 mm in width and about 200 µm in thickness, and is in the vertical orientation in the 

furnace. 

According to the parabolic flight trajectory, the gravity level changes during each parabola 

from 1 g → 1.8 g → 0 g → 1.8 g → 1 g (Fig.1b), with approximately 24s and 22s at 1.8 

g and 0 g respectively [9]. During the course of the flight, the parabola is repeated a total of 

31 times. In this work, we present the solidification experiments for both alloys at slow cooling 

rate R = 0.05 K/s that extended over five parabolas. 
 
  

 

CET triggering by variation of gravity level 

Figure 7 displays a sequence of radiographs recorded during a part of the solidification 

experiment of refined Al – 20wt% Cu sample under varying gravity level. During the 1 g 

period, a development of a columnar microstructure was observed at the bottom of the field of 

view. Fragmentation phenomena continuously occurred along the solid/liquid interface at the 

top of the mushy zone, and the dendrite fragments floated from the bottom to the top due to 

buoyancy force (Fig. 7a). During their upward motion, the fragment gradually melted and 

eventually disappeared, like in experiments performed in terrestrial laboratory conditions.  

However, when the gravity level suddenly increased to ~1.8 g at the beginning of the parabola, 

a sudden nucleation of a large number of equiaxed grains ahead of the columnar front was 

observed (Fig. 7b). The large number of grains nucleated ahead of the columnar front was 

likely triggered by an increase of the liquid undercooling ahead of the columnar front, which 

is itself due to a decrease of the liquid composition ahead of the columnar structure. This 

composition decrease is attributed to the increase of the hydrostatic pressure of the melt when 

(a)
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Figure 6: (a) XRMON-PFF facility in Novepace Airbus A300 Zero-G, (b) Parabola profile showing 

gravity level variation with time 
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the gravity level changed from 1 g to 1.8 g. As the two thin glassy carbon sheets that compose 

the crucible are flexible, the hydrostatic pressure rise caused a larger bulging of the sample at 

the solid-liquid interface. As a consequence, this bulging increase induced a downward flow 

of less concentrated liquid toward the columnar front [32]. The new grains started to float and 

then melted when they reached the hot region of the liquid (Fig. 7c). 

As soon as the gravity level reached ~0 g, the equiaxed grains stopped moving upward because 

the buoyancy force vanished (Fig. 7d). After the reduced gravity period, the gravity level 

increased again to 1.8 g and the explosive nucleation phenomenon occurred again (Fig. 7e). 

All these phenomena were repeated in the following parabolas. It is worth noting that these 

observations were also observed in another experiment, with the same temperature gradient but 

a higher cooling rate (R = 0.15 K/s) [32]. 

 
 

 

Figure 7: Sequence of radiographs recorded during a part of the solidification experiment for the 

refined Al – 20 wt% Cu, with a low cooling rate (R = -0.05 K/s) and a high temperature gradient (G = 

15 K/mm) and under varying gravity level. The gravity level points vertically downwards relative to the 

FoV. 
  

   

 

A sequence of radiographs recorded during a part of the solidification experiment on refined 

Al – 10wt% Cu sample is shown in Fig. 8. Figure 8a shows the initial columnar growth, with 

a few nucleations of equiaxed grains ahead of the columnar front during the 1 g period. When 

the gravity level suddenly increased to 1.8 g a large number of equiaxed grains nucleated ahead 

the solidification front (Fig. 8a), like for the Al – 20wt% Cu sample. The large number of grains 

nucleating ahead of the columnar front was triggered by an increase of the liquid undercooling 

ahead of the columnar front due to a downward flow of higher purity liquid toward the 

columnar front. However, contrary to the Al-20wt% Cu sample, these grains moved slightly 

downwards and formed a closely-packed layer of equiaxed grains ahead the columnar front, 

making it easier to form a CET. This change in the behavior of equiaxed grains is expected for 

an alloy of composition Al – 10 wt% Cu, since the density of the solid is higher than the density 

of the liquid [16]. During the subsequent increase of gravity level from 0 g to 1.8 g period, the 

explosive nucleation phenomenon occurred again (Fig. 8d). 

 

t = 230 s, g  1g 

(a) 

t = 240 s, g  1.8g 

(b) 

t = 248 s, g  1.8g 

(c) 

t = 280 s, g  0g 

(d) 

Liquid 

Solid 

1mm 

t = 295 s, g  1.8g 

(e) 
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Figure 8: Sequence of radiographs recorded during the solidification of a refined Al – 10 wt.% Cu for 

a low cooling rate (R = 0.05 K/s) and temperature gradient (G = 5.5 K/mm) under varying gravity level 

(parabolic flight). The gravity vector (in 1 g and 1.8 g periods) points vertically downwards relative to 

the field of view. 

Conclusion 

X-ray radiography was used during Al-Cu solidification experiments carried out in terrestrial 

conditions and during parabolic flight experiments. It was observed that gravity level variations 

can have a significant impact on the microstructure formation. The variation of g-level induces 

a variation of the liquid composition ahead of the solid/liquid interface which affects the 

constitutional undercooling. For a refined alloy, this undercooling increase can provoke an 

explosive nucleation of equiaxed grains ahead the columnar front, yielding a composition-

dependent columnar-to-equiaxed transition. 

 

Parabolic Flight Experiments: other 

On separate parabolic flights, the effects of varying g conditions on equiaxed solidification 

were investigated [33]. In this work, a grain-refined Al-20wt%Cu alloy was solidified, near-

isothermally, also using XRMON-GF, with the hot and cold zones set to the same temperature. 

Solidification was controlled such that nucleation occurred coincident with the onset of 

microgravity. This allowed for the effects of microgravity on equiaxed nucleation and initial 

growth, followed by continuing solidification in hypergravity, to be observed, as well as the 

effect on the semi-coherent grain structure when transitioning between the two. Under 

nominally 0 g conditions, equiaxed grains were observed to move together within the FoV, in 

an opposite direction to the g-level fluctuations recorded during solidification: at levels slightly 

above 0 g the unconstrained dendrites moved downwards, and vice-versa. This was 

unexpected, as the dendrites are lighter than the average liquid for this alloy [16]. It seems as 

though their motion was due to advection in the denser Al-Cu liquid. Once the 0 g → 1.8 g 

transition occurred, this liquid motion caused packing of the equiaxed grains towards the 

bottom of the sample, at which time they formed a rigid coherent structure [33]. Due to the 

flexibility of the two thin glassy carbon sheets that form the crucible walls, bulging of the 

bottom of the sample at high g occurs due to the downward flow of both liquid and advected 

solid. This is the cause of the apparently anomalous solid motion. Normal behaviour (solid 

buoyancy) would be expected if a rigid crucible were used.  

On parabolic flights in which the XRMON foam unit was used, we found out that under 

microgravity conditions, imbibition of liquid metal in the foam structure due to capillarity 

forces dominated. The previously induced drainage due to gravity disappeared. This effect 

could be observed especially after gravity transition from 1.8 to 0 g. The flow back of liquid 

t = 195 s, g  1g t = 219 s, g  1.8g t = 255 s, g  0g t = 279 s, g  1.8g 

 (a) 1 mm  (b)   (c)  (d)  
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during the transition from 0 g to 1.8 g enabled calculation of the effective viscosity and surface 

tension of the liquid foams for the first time [34]. 

 

Conclusions and Outlook 

Microgravity experiments have been used to deepen our knowledge on processing of liquid 

aluminium alloys – both on foaming and solidification phenomena. However, due to the limited 

opportunities afforded to date, only a small number of conditions have been investigated. It is 

expected that more microgravity flights will be run in the future, enabling expansion in the 

number of cases studied, and the investigation of new phenomena. Development of an 

experimental facility on the ISS, or some other space station, would enable multiple 

experiments to be performed using the same equipment because the microgravity time on board 

is not limited by nature. 
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