132 research outputs found
SKA studies of nearby galaxies : star-formation, accretion processes and molecular gas across all environments
Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceThe SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with Jy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.Peer reviewedFinal Published versio
MALS SALT-NOT survey of MIR-selected powerful radio-bright AGN at 0<z<3.5
We present results of an optical spectroscopic survey using SALT and NOT to
build a WISE mid-infrared color-based, dust-unbiased sample of powerful
radio-bright (200 mJy at 1.4 GHz) AGN for the MeerKAT Absorption Line Survey
(MALS). Our sample has 250 AGN (median ) showing emission lines, 26 with
no emission lines, and 27 without optical counterparts. Overall, our sample is
fainter (=0.6 mag) and redder (=0.2 mag) than
radio-selected quasars, and representative of fainter quasar population
detected in optical surveys. About 20% of the sources are narrow line AGN
(NLAGN) 65% of these, at are galaxies without strong nuclear
emission, and 10% at , have emission line ratios similar to radio
galaxies. The farthest NLAGN in our sample is M15132524 (),
and the largest (size330 kpc) is M09093133 (). We
discuss in detail 110 AGN at . Despite representing the radio
loudest quasars (median =3685), their Eddington ratios are similar to the
SDSS quasars having lower . We detect 4 CIV BALQSOs, all among AGN with
least , and highest black hole masses and Eddington ratios. The BAL
detection rate (%) is consistent with that seen in extremely
powerful ( WHz) quasars. Using optical light-curves,
radio polarization and -ray detections, we identify 7 high-probability
BL Lacs. We also summarize the full MALS footprint to search for HI 21-cm and
OH 18-cm lines at .Comment: 62 pages, 15 figures and 3 tables; accepted in ApJ (updated the
redshift of M1312-2026 to z=0.977
The MeerKAT international GHz tiered extragalactic exploration (MIGHTEE) survey
The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to µJy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ∼1 deg2 MeerKAT pointing. The observations will provide radio continuum, spectral line and polarisation information. As such, MIGHTEE, along with the excellent multi-wavelength data already available in these deep fields, will allow a range of science to be achieved. Specifically, MIGHTEE is designed to significantly enhance our understanding of, (i) the evolution of AGN and star-formation activity over cosmic time, as a function of stellar mass and environment, free of dust obscuration; (ii) the evolution of neutral hydrogen in the Universe
and how this neutral gas eventually turns into stars after moving through the molecular phase, and how efficiently this can fuel AGN activity; (iii) the properties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies. MIGHTEE will reach similar depth to the planned SKA all-sky survey, and thus will provide a pilot to the cosmology experiments that will
be carried out by the SKA over a much larger survey volume
RyRCa2+ Leak Limits Cardiac Ca2+ Window Current Overcoming the Tonic Effect of Calmodulin in Mice
Ca2+ mediates the functional coupling between L-type Ca2+ channel (LTCC) and sarcoplasmic reticulum (SR) Ca2+ release channel (ryanodine receptor, RyR), participating in key pathophysiological processes. This crosstalk manifests as the orthograde Ca2+-induced Ca2+-release (CICR) mechanism triggered by Ca2+ influx, but also as the retrograde Ca2+-dependent inactivation (CDI) of LTCC, which depends on both Ca2+ permeating through the LTCC itself and on SR Ca2+ release through the RyR. This latter effect has been suggested to rely on local rather than global Ca2+ signaling, which might parallel the nanodomain control of CDI carried out through calmodulin (CaM). Analyzing the CICR in catecholaminergic polymorphic ventricular tachycardia (CPVT) mice as a model of RyR-generated Ca2+ leak, we evidence here that increased occurrence of the discrete local SR Ca2+ releases through the RyRs (Ca2+ sparks) causea depolarizing shift in activation and a hyperpolarizing shift inisochronic inactivation of cardiac LTCC current resulting in the reduction of window current. Both increasing fast [Ca2+]i buffer capacity or depleting SR Ca2+ store blunted these changes, which could be reproduced in WT cells by RyRCa2+ leak induced with Ryanodol and CaM inhibition.Our results unveiled a new paradigm for CaM-dependent effect on LTCC gating and further the nanodomain Ca2+ control of LTCC, emphasizing the importance of spatio-temporal relationships between Ca2+ signals and CaM function
Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors
The normal physiological contraction of the urinary bladder, which is required for voiding, is predominantly mediated by muscarinic receptors, primarily the M3 subtype, with the M2 subtype providing a secondary backup role. Bladder relaxation, which is required for urine storage, is mediated by β-adrenoceptors, in most species involving a strong β3-component. An excessive stimulation of contraction or a reduced relaxation of the detrusor smooth muscle during the storage phase of the micturition cycle may contribute to bladder dysfunction known as the overactive bladder. Therefore, interference with the signal transduction of these receptors may be a viable approach to develop drugs for the treatment of overactive bladder. The prototypical signaling pathway of M3 receptors is activation of phospholipase C (PLC), and this pathway is also activated in the bladder. Nevertheless, PLC apparently contributes only in a very minor way to bladder contraction. Rather, muscarinic-receptor-mediated bladder contraction involves voltage-operated Ca2+ channels and Rho kinase. The prototypical signaling pathway of β-adrenoceptors is an activation of adenylyl cyclase with the subsequent formation of cAMP. Nevertheless, cAMP apparently contributes in a minor way only to β-adrenoceptor-mediated bladder relaxation. BKCa channels may play a greater role in β-adrenoceptor-mediated bladder relaxation. We conclude that apart from muscarinic receptor antagonists and β-adrenoceptor agonists, inhibitors of Rho kinase and activators of BKCa channels may have potential to treat an overactive bladder
Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism
ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.Neurolog
- …