453 research outputs found
Buffer-gas cooling of ion beams
The cooling action of a buffer gas on ions contained within it can be used to cool an ion beam, thereby greatly improving its emittance and energy spread. It can also be used to greatly enhance the collection of an ion beam in an electromagnetic trap. The basic principles will be introduced in the context of the development of a system for cooling ISOLDE beams for the ISOLTRAP facility
Dark energy, antimatter gravity and geometry of the Universe
This article is based on two hypotheses. The first one is the existence of
the gravitational repulsion between particles and antiparticles. Consequently,
virtual particle-antiparticle pairs in the quantum vacuum may be considered as
gravitational dipoles. The second hypothesis is that the Universe has geometry
of a four-dimensional hyper-spherical shell with thickness equal to the Compton
wavelength of a pion, which is a simple generalization of the usual geometry of
a 3-hypersphere. It is striking that these two hypotheses lead to a simple
relation for the gravitational mass density of the vacuum, which is in very
good agreement with the observed dark energy density
The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results
The highest precision in direct mass measurements is obtained with Penning
trap mass spectrometry. Most experiments use the interconversion of the
magnetron and cyclotron motional modes of the stored ion due to excitation by
external radiofrequency-quadrupole fields. In this work a new excitation
scheme, Ramsey's method of time-separated oscillatory fields, has been
successfully tested. It has been shown to reduce significantly the uncertainty
in the determination of the cyclotron frequency and thus of the ion mass of
interest. The theoretical description of the ion motion excited with Ramsey's
method in a Penning trap and subsequently the calculation of the resonance line
shapes for different excitation times, pulse structures, and detunings of the
quadrupole field has been carried out in a quantum mechanical framework and is
discussed in detail in the preceding article in this journal by M. Kretzschmar.
Here, the new excitation technique has been applied with the ISOLTRAP mass
spectrometer at ISOLDE/CERN for mass measurements on stable as well as
short-lived nuclides. The experimental resonances are in agreement with the
theoretical predictions and a precision gain close to a factor of four was
achieved compared to the use of the conventional excitation technique.Comment: 12 pages, 14 figures, 2 table
Q-value of the superallowed beta decay of Ga-62
Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at
the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC
value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained
from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and
62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved
vector current hypothesis (CVC). The mass excess values measured were (-51986.5
+-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV
for 62Cu.Comment: 12 pages, 3 figures, 2 tables, submitted to Phys. Lett. B. v2: added
acknowledgement
Position-sensitive ion detection in precision Penning trap mass spectrometry
A commercial, position-sensitive ion detector was used for the first time for
the time-of-flight ion-cyclotron resonance detection technique in Penning trap
mass spectrometry. In this work, the characteristics of the detector and its
implementation in a Penning trap mass spectrometer will be presented. In
addition, simulations and experimental studies concerning the observation of
ions ejected from a Penning trap are described. This will allow for a precise
monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure
Separated Oscillatory Fields for High-Precision Penning Trap Mass Spectrometry
Ramsey's method of separated oscillatory fields is applied to the excitation
of the cyclotron motion of short-lived ions in a Penning trap to improve the
precision of their measured mass. The theoretical description of the extracted
ion-cyclotron-resonance line shape is derived out and its correctness
demonstrated experimentally by measuring the mass of the short-lived Ca
nuclide with an uncertainty of using the ISOLTRAP Penning
trap mass spectrometer at CERN. The mass value of the superallowed beta-emitter
Ca is an important contribution for testing the conserved-vector-current
hypothesis of the electroweak interaction. It is shown that the Ramsey method
applied to mass measurements yields a statistical uncertainty similar to that
obtained by the conventional technique ten times faster.Comment: 5 pages, 4 figures, 0 table
What would be outcome of a Big Crunch?
I suggest the existence of a still undiscovered interaction: repulsion
between matter and antimatter. The simplest and the most elegant candidate for
such a force is gravitational repulsion between particles and antiparticles. I
argue that such a force may give birth to a new Universe; by transforming an
eventual Big Crunch of our universe, to an event similar to Big Bang. In fact,
when a collapsing Universe is reduced to a supermassive black hole of a small
size, a very strong field of the conjectured force may create
particle-antiparticle pairs from the surrounding vacuum. The amount of the
antimatter created from the physical vacuum is equal to the decrease of mass of
"black hole Universe" and violently repelled from it. When the size of the
black hole is sufficiently small the creation of antimatter may become so huge
and fast, that matter of our Universe may disappear in a fraction of the Planck
time. So fast transformation of matter to antimatter may look like a Big Bang
with the initial size about 30 orders of magnitude greater than the Planck
length, questioning the need for inflation. In addition, a Big Crunch, of a
Universe dominated by matter, leads to a new Universe dominated by antimatter,
and vice versa; without need to invoke CP violation as explanation of
matter-antimatter asymmetry. Simply, our present day Universe is dominated by
matter, because the previous Universe was dominated by antimatter
Evidence for a breakdown of the Isobaric Multiplet Mass Equation: A study of the A=35, T=3/2 isospin quartet
Mass measurements on radionuclides along the potassium isotope chain have
been performed with the ISOLTRAP Penning trap mass spectrometer. For 35K
T1/2=178ms) to 46K (T1/2=105s) relative mass uncertainties of 2x10-8 and better
have been achieved. The accurate mass determination of 35K (dm=0.54keV) has
been exploited to test the Isobaric Multiplet Mass Equation (IMME) for the
A=35, T=3/2 isospinquartet. The experimental results indicate a deviation from
the generally adopted quadratic form.Comment: 8 pages, 4 figure
Magnetic field stabilization for high-accuracy mass measurements on exotic nuclides
The magnetic-field stability of a mass spectrometer plays a crucial role in
precision mass measurements. In the case of mass determination of short-lived
nuclides with a Penning trap, major causes of instabilities are temperature
fluctuations in the vicinity of the trap and pressure fluctuations in the
liquid helium cryostat of the superconducting magnet. Thus systems for the
temperature and pressure stabilization of the Penning trap mass spectrometer
ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the
fluctuations by at least one order of magnitude downto dT=+/-5mK and
dp=+/-50mtorr has been achieved, which corresponds to a relative frequency
change of 2.7x10^{-9} and 1.5x10^{-10}, respectively. With this stabilization
the frequency determination with the Penning trap only shows a linear temporal
drift over several hours on the 10 ppb level due to the finite resistance of
the superconducting magnet coils.Comment: 23 pages, 13 figure
Production and trapping of carbon clusters for absolute mass measurements at ISOLTRAP
Singly-charged carbon clusters C/sub n//sup +/ (n >or= 1) have been produced by laser-induced desorption and fragmentation of C/sub 60/ fullerenes and have been injected into and stored in the Penning trap system of the ISOLTRAP mass spectrometer at ISOLDE/CERN. The present study is the first step to extend the until now direct mass measurements at ISOLTRAP to absolute mass measurements by using clusters of /sup 12/C. (10 refs)
- …