94 research outputs found

    Development and characterization of 3CaO.P2O5-SiO2-MgO glass-ceramics with different crystallization degree

    Get PDF
    The CaO-P2O5-SiO2-MgO system presents several compounds used as biomaterials such as hydroxyapatite (HA), tricalcium phosphate (TCP) and TCP with magnesium substituting partial calcium (TCMP). The beta-TCMP phase with whitlockite structure has interesting biological features and mechanical properties, meeting the requirements of a bioactive material for bone restoration. In this work, the production of Mg-doped TCP, beta-TCMP, has been investigated by crystallization from a glass composed of 52.75 wt% 3CaO center dot P2O5, 30 wt% SiO2 and 17.25 wt% MgO (i.e., 31.7 mol% CaO, 10.6 mol% P2O5, 26.6 mol% MgO and 31.1 mol% SiO2) using heat treatments between 775. and 1100 degrees C for up to 8 h. The devitrification process of the glass has been accompanied by differential scanning calorimetry (DSC), high-resolution X-ray diffraction (HRXRD), relative density and bending strength measurements. The characterization by HRXRD and DSC revealed the occurrence of whitlockite soon after the bulk glass preparation, a transient non-cataloged silicate between 800 degrees C and 1100 degrees C, and the formation of diopside in samples treated at 1100 degrees C as crystalline phases. The overall crystalline fraction varied from 26% to 70% depending on the heat treatments. Furthermore, contraction of the a-axis lattice parameter and expansion of the c-axis lattice parameter of the whitlockite structure have been observed during the heat treatments, which were attributed to the beta-TCMP formation with the partial substitution of Ca2+ by Mg2+. Relative densities near 99% and 97% for the glass and glass-ceramics respectively indicated a discrete reduction as a function of the devitrification treatment. Bending strengths of 70 MPa and 120 MPa were determined for the glass and glass-ceramic material crystallized at 975 degrees C for 4 h, respectively

    Glass-ceramic sealant for solid oxide fuel cells application: Characterization and performance in dual atmosphere

    Get PDF
    This document is the Accepted Manuscript version of the following article: A. G. Sabato, G. Tempura, D. Montinaro, A. Chysanthou, M. Salvo, E. Bernardo, M. Secco, F. Meacetto, ‘Glass-ceramic sealant for solid oxide fuel cells application: characterization and performance in dual atmosphere’, Journal of Power Sources, Vol. 328:262-270, October 2016, doi: http://dx.doi.org/10.1016/j.jpowsour.2016.08.010. Published by Elsevier. This manuscript version is distributed distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Glass-ceramic composition was designed and tested for use as a sealant in solid oxide fuel cell (SOFC) planar stack design. The crystallization behaviour was investigated by calculating the Avrami parameter (n) and the activation energy for crystallization (Ec) was obtained. The calculated values for n and Ec were 3 and 413.5 kJ/mol respectively. The results of thermal analyses indicate that this composition shows no overlap between the sintering and crystallization stages and thus an almost pore-free sealant can be deposited and sintered at 850 °C in air for 30 min. A gas tightness test has been carried out at 800 °C for 1100 h in dual atmosphere (Ar-H2 and air) without recording any leakage. Morphological and crystalline phase analyses were conducted prior and following tests in dual atmospheres in order to assess the compatibility of the proposed sealant with the metallic interconnect.Peer reviewe

    Glass-ceramics: Their production from wastes-a review

    No full text

    Verifying integer programming results

    Get PDF
    Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of state-of-the-art MIP solution algorithms, the ideal form of such a certificate is not entirely clear. This paper proposes such a certificate format designed with simplicity in mind, which is composed of a list of statements that can be sequentially verified using a limited number of inference rules. We present a supplementary verification tool for compressing and checking these certificates independently of how they were created. We report computational results on a selection of MIP instances from the literature. To this end, we have extended the exact rational version of the MIP solver SCIP to produce such certificates

    The Sariçiçek Howardite Fall in Turkey: Source Crater of HED Meteorites on Vesta and İmpact Risk of Vestoids

    Get PDF
    The Sariçiçek howardite meteorite shower consisting of 343 documented stones occurred on 2 September 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Sariçiçek experienced a complex cosmic ray exposure history, exposed during ~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid was launched by an impact 22 ± 2 Ma ago to Earth (as did one third of all HED meteorites). SIMS dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages for the basaltic magma clasts. The apatite U-Pb age of 4525 ± 17 Ma, K-Ar age of ~3.9 Ga, and the U,Th-He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic and impact-related resetting ages, respectively. Petrographic, geochemical and O-, Cr- and Tiisotopic studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic observations and analysis of organic material indicate a small portion of carbonaceous chondrite material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 kms-1 from NW, fragmentations at 37, 33, 31 and 27 km altitude, and provide a pre-atmospheric orbit that is the first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data indicate the similarity of Sariçiçek with the Vesta asteroid family (V-class) spectra, a group of asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4 m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antonia impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was formed ~22 Ma ago

    Materiali ceramici ottenuti a partire da tufi basaltici

    No full text
    The possibility to obtain a cheap ceramic material based on 50 wt % basaltic tuffs and 50 wt % industrial clays was studied. The tuffs were characterized by optical microscopy, X-ray diffraction and differential thermal analysis. It was shown that this material is appropriate for the ceramic industry: it is easy for milling and is characterized by low liquidus temperature. The sintering behaviour of the ceramic was evaluated by hot-stage microscopy and dilatometry. The structure of samples, heat-treated at different temperatures, were observed by scanning electron microscopy while the densification degree was evaluated by dry flow and gas pycnometery. Samples with 13% total porosity and 4% water absorption were obtained at 1150 °C for 30 min soaking

    Sintered material from alkaline basaltic tuffs

    No full text
    The possibility to obtain sintered material from alkaline basaltic tuffs is demonstrated. The parent rock was milled for 10-15 min, the resulting powder was pressed at 100 MPa and the obtained samples were heat-treated in the range of 1000-1140 °C. The sintering behaviour and the phase formation were studied by pycnometry, dilatometry, DTA, XRD and SEM. The final material was obtained by sintering at 1100 °C and is characterized by zero water absorption, 8-9 vol.% closed porosity and a structure similar to a glass-ceramic. Due to high crystallization trend of used composition, phase formation takes place during the sintering and cooling steps; this leads to a crystallinity of ~60% and formation of different crystal phases (pyroxene, anorthite, spinel and hematite). Despite the low-cost production cycle the obtained material is characterized by high mechanical properties: bending strength of 100 MPa and Young modulus of 90 GPa. © 2008 Elsevier Ltd. All rights reserved.Ministry of Education and ScienceThe authors gratefully acknowledge the financial support within Project TK-X-1713/07 (Bulgarian Ministry of Science and Education). They express sincere thanks to Prof. M. Pelino (University of L’Aquila) for the immense technical support, Dr. E. Bernardo (University of Padova) for the evaluations of mechanical properties and Dr. G. Taglieri (University of L’Aquila) for the XRD analysis
    corecore