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Kevin K. H. Cheung∗ and Ambros Gleixner† and Daniel E. Steffy‡

November 20, 2016

Abstract

Software for mixed-integer linear programming can return incorrect results for
a number of reasons, one being the use of inexact floating-point arithmetic. Even
solvers that employ exact arithmetic may suffer from programming or algorithmic er-
rors, motivating the desire for a way to produce independently verifiable certificates
of claimed results. Due to the complex nature of state-of-the-art MILP solution algo-
rithms, the ideal form of such a certificate is not entirely clear. This paper proposes
such a certificate format, illustrating its capabilities and structure through examples.
The certificate format is designed with simplicity in mind and is composed of a list
of statements that can be sequentially verified using a limited number of simple yet
powerful inference rules. We present a supplementary verification tool for compressing
and checking these certificates independently of how they were created. We report
computational results on a selection of mixed-integer linear programming instances
from the literature. To this end, we have extended the exact rational version of the
MIP solver SCIP to produce such certificates.

Keywords: correctness, verification, proof, certificate, optimality, infeasibility,
mixed-integer linear programming

1 Introduction

Let (MIP ) denote the following mixed-integer linear programming (MILP) problem:

min cTx
s.t. C(x)

x ∈ Rn

xi ∈ Z ∀ i ∈ I

where n is a positive integer, c ∈ Qn, C(x) is a finite set of linear constraints on x with
rational coefficients, and I ⊆ {1, . . . , n}.

Methods and techniques for solving instances of (MIP ) have been developed over the
years. Solvers can now routinely handle large-scale instances. As the size of the instances
that can be solved and the complexity of the solvers increase, a question emerges: How
does one know if the computational results are correct?

Though rare, MILP solvers do occasionally return incorrect or dubious results (see [11]).
Despite such errors, maintaining a skeptical attitude that borders on paranoia is arguably
neither healthy nor practical. After all, machines do outperform humans on calculations
by many orders of magnitude and many tasks in life are now entrusted to automation.
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Hence, the motivation for asking how to verify correctness of computational results is not
necessarily because of an inherent distrust of solvers. Rather, it is the desire to seek ways to
identify and reduce errors and to improve confidence in the computed results. After all, if
one believes in Murphy’s Law, errors tend to arise when one can least afford to have errors.
Therefore, there is a practical need to improve the robustness and correctness of solvers.
Previous research on computing accurate solutions to MIPs has utilized various techniques
including interval arithmetic [33], exact rational arithmetic [4, 11, 15], and safely derived
cuts [10]. Nevertheless, correctness cannot be guaranteed as attempts along this line still
fall short of provably-correct code using formal methods that are found in mission-critical
applications such as software for medical applications and avionics. Incidentally, a footnote
in [11] states: “even with a very careful implementation and extensive testing, a certain
risk of an implementation error remains”.

One way to satisfy skeptics is to build solvers that output extra information that fa-
cilitates independent checking. We shall use the word certificate to refer to such extra
information for a given problem that has been solved. Ideally, the certificate should allow
for checking the results using fewer resources than what are needed to solve the problem
from scratch. Such a certificate could in principle be used in formal verification using a
proof checker as done in the Flyspeck Project [17, 35, 37] for a formal proof of Kepler’s Con-
jecture, or informal verification as done by Applegate et al. [3] for the Traveling Salesman
Problem and by Carr et al. [9] in their unpublished work for MILP in general. Naturally,
certificates should be as simple to verify as possible if they are to be convincing.

We highlight two specific applications where solution verification is desirable. First,
Achterberg [1] presented MILP formulations for circuit design verification problems. For
design verification, obtaining correct results is of critical importance; yet floating-point
based solvers have been shown to return incorrect results on some of these instances [11].
Second, Pulaj [36] has recently used integer programming models to settle some open
questions related to Frankl’s conjecture (the union-closed sets conjecture). This, and other
applications in pure mathematics, are also cases where correctness of the results is of the
utmost importance. Software developed in connection with our paper has been successfully
used to generate and check certificates for MILPs coming from both of these applications.

For linear programming (LP), duality theory tells us that an optimal primal solution
and an optimal dual solution are sufficient to facilitate effective verification of optimality.
In the case of checking infeasibility, a Farkas certificate will do. Therefore, verifying LP
results, at least in the case when exact rational arithmetic is used, is rather straightforward.
However, the situation with MILP is drastically different. From a theoretical perspective,
even though some notions of duality for MILP have been formulated (see the survey [21]),
small (i.e. polynomial size) certificates for infeasibility or optimality of MILPs may not even
exist. As a result, there are many forms that certificates could take: a branch-and-bound
tree, a list of derived cutting planes, a superadditive dual function, or other possibilities
for problems with special structures such as pure integer linear programming and binary
programming (see, for example, [8, 14, 28, 30]). Which format would be preferred for
certificate verification is not entirely clear, and in this paper we provide reasoning behind
our choice.

From a software perspective, MILP result certification is also considerably more compli-
cated than LP certification. Even though most solvers adopt the branch-and-cut paradigm,
they typically do not make the computed branch-and-bound tree or generated cuts readily
available, and they may also utilize many other techniques including constraint propa-
gation, conflict analysis, or reduced cost fixing. Thus, even if a solver did print out all
information used to derive its solution, a verifier capable of interpreting such information
would itself be highly complex, contradicting our desire for a simple verifier. As a result,
other than accepting the results of an exact solver such as [11], the best that many people
can do today to “verify” the results of a solver on a MILP instance is to solve the instance
by several different solvers and check if the results match or minimally check that an opti-
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mal solution is indeed feasible and has the correct objective function value as done by the
solution checker in [29].

The main contribution of this paper is the development of a certificate format for the
verification of mixed-integer linear programs. Compared to the previous work of Applegate
et al. [3] for the Traveling Salesman Problem and the unpublished work of Carr et al. [9]
for general MILP, our certificate format has a significantly simpler structure. It consists
of a sequence of statements that can be verified one by one using simple inference rules,
facilitating verification in a manner akin to natural deduction. The approach is similar
to that for verification of unsatisfiability proofs for SAT formulas. (See for example [24,
38].) This simple certificate structure makes it easier for researchers to develop their own
independent certificate verification programs, or check the code of existing verifiers, even
without any expert knowledge of MILP solution algorithms.

To demonstrate the utility of the proposed certificate format, we have developed a
reference checker in C++ and added the capability to produce such certificates to the
exact MIP solver [11] of SCIP [18]. We used these tools to verify results reported in
[11]. To the best of our knowledge, this work also represents the first software for general
MILP certificate verification that has been made available to the mathematical optimization
community.

Organization of the paper. Even though the proposed format for the certificate is rather
straightforward, some of the details are nevertheless technical. Therefore, in this paper, we
discuss the certificate format at a conceptual level. The full technical specification is found
in the accompanying computer files. We begin with the necessarily ingredients starting
with the simple case of LP in Section 2. In Section 3, the ideas for dealing with LP are
extended to pure integer linear programming. The full conceptual description of the format
of the certificate is then given in Section 4. Computational experiments are reported in
Section 5, and concluding remarks are given in Section 6.

Accompanying computer files. Software, technical documentation and certificate files
are available at: https://github.com/ambros-gleixner/VIPR

2 Certificates for linear programming

Throughout this paper, we assume that problems are specified and solved with exact ra-
tional arithmetic.

A typical certificate of optimality for an LP is a dual-feasible solution whose objective
function value matches the optimal value. However, there is no need to specify the dual
when one views the task of certification as an inference procedure. (For instance, see [25].)
To facilitate discussion, we call this inference procedure linear inequality inference and the
details are as follows.

Let (S) denote the system of linear constraints:

Ax ≥ b
A′x ≤ b′
A′′x = b′′.

Here, x is a vector of variables, A ∈ Rm×n, A′ ∈ Rm′×n, A′′ ∈ Rm′′×n, b ∈ Rm, b′ ∈ Rm′
,

and b′′ ∈ Rm′′
for some nonnegative integers n, m, m′, and m′′.

We say that cTx ≥ v is obtained by taking a suitable linear combination of the con-
straints in (S) if

cT = dTA+ d′
T
A′ + d′′

T
A′′, v = dTb+ d′

T
b′ + d′′

T
b′′

for some d ∈ Rm, d′ ∈ Rm′
, and d′′ ∈ Rm′′

with d ≥ 0 and d′ ≤ 0. Clearly, if x satisfies (S),
then it necessarily satisfies cTx ≥ v. We say that the inequality cTx ≥ v is inferred from (S).

3
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Remarks.

1. Together, d, d′, d′′ is simply a feasible solution to the linear programming dual of the
linear program (LP ) given by:

min cTx
s.t. Ax ≥ b

A′x ≤ b′
A′′x = b′′.

2. Hooker [25] calls cTx ≥ v a surrogate of (S).

Suppose that an optimal solution to (LP ) exists and the optimal value is v. Linear
programming duality theory guarantees that cTx ≥ v can be inferred from (S). Therefore,
linear inequality inference is sufficient to certify optimality for linear programming. Con-
ceptually, the certificate that we propose is a listing of the constraints in (S) followed by
the inequality cTx ≥ v with the associated multipliers used in the inference as illustrated
in the following example.

Example 1. The following shows an LP problem and its associated certificate.

min 2x+ y
s.t.
C1 : 5x− y ≥ 2
C2 : 3x− 2y ≤ 1.

Given
C1 : 5x− y ≥ 2
C2 : 3x− 2y ≤ 1

Derived Reason
obj : 2x+ y ≥ 1 {1× C1 + (−1)× C2}

Here, C1 and C2 are constraint labels. Taking the suitable linear combination 1 × C1 +
(−1)×C2 gives 2x+y ≥ 1, thus establishing that 1 is a lower bound for the optimal value.

We remark that this type of linear inference could also be used to derive ≤-inequalities
or equality constraints. Assuming that all problem data is rational, rational multipliers are
sufficient to certify infeasibility or optimality.

3 Handling Chvátal-Gomory cutting planes

Gomory [20] showed in theory that, for pure integer linear programming (ILP), optimality
or infeasibility can be established by a pure cutting-plane approach. Such an approach can
also work in practice (see [6, 39]). In addition to linear inequality inference, a rounding
operation is needed.

Suppose that cTx ≥ v can be inferred from (S) by taking a suitable linear combination
of the constraints. If ci ∈ Z for i ∈ I for some I ⊆ {1, . . . , n} and ci = 0 for i /∈ I, then
any x ∈ Rn satisfying (S) with xi ∈ Z for i ∈ I must also satisfy cTx ≥ dve. We say that
cTx ≥ dve is obtained from cTx ≥ v by rounding.

When I = {1, . . . , n}, the inequality cTx ≥ dve is known as a Chvátal-Gomory cut (CG-
cut in short). It can then be added to the system and the process of obtaining another
CG-cut can be repeated.

Conceptually, a certificate for an ILP instance solved using only CG-cuts can be given
as a list of the original constraints followed by the derived constraints.

Example 2. The following shows an ILP problem and its associated certificate.
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min x+ y
s.t.
C1 : 4x+ y ≥ 1
C2 : 4x− y ≤ 2

x, y ∈ Z

Given
x, y ∈ Z

C1 : 4x+ y ≥ 1
C2 : 4x− y ≤ 2

Derived Reason
C3 : y ≥ − 1

2

{
1
2 × C1 +

(
− 1

2

)
× C2

}
C4 : y ≥ 0 {round up C3}
C5 : x+ y ≥ 1

4

{
1
4 × C1 + 3

4 × C4
}

C6 : x+ y ≥ 1 {round up C5}

Note that the derived constraints in the certificate can be processed in a sequential man-
ner. In the next section, we see how to deal with branching without sacrificing sequential
processing.

4 Branch-and-cut certificates

In practice, most instances of (MIP ) are not solved by cutting planes alone. Thus, certifi-
cates as described in the previous section are of limited utility.

We now propose a type of certificate for optimality or infeasibility established by a
branch-and-cut procedure in which the generated cuts at any node can be derived as split
cuts and branching is performed on a disjunction of the form aTx ≤ δ ∨ aTx ≥ δ+ 1 where
δ ∈ Z and aTx is integral for all feasible x.

The use of split disjunctions allows us to consider branching and cutting under one
umbrella. Many of the well-known cuts generated by MILP solvers can be derived as split
cuts (see [12]) and they are effective in closing the integrality gap in practice (see [16]).
Branching typically uses only simple split disjunctions (where the a above is a unit vector),
although some studies have considered the computational performance of branching on
general disjunctions [13, 27, 34].

Recall that each branching performed splits the solution space into two subcases. At
the end of a branch-and-bound (or branch-and-cut) procedure, each leaf of the branch-
and-bound tree corresponds to one of the cases and the leaves together cover all the cases
needed to be considered. Hence, if the branch-and-bound tree is valid, all one needs to look
at are the LP results at the leaves.

Our proposal is to “flatten” the branch-and-bound tree into a list of statements that can
be verified sequentially. Thus, our approach departs from the approach in [3] and [9] which
requires explicit handling of the branch-and-bound tree. The price we pay is that we can
no longer just examine the leaves of the tree. Instead, we process the nodes in a bottom-up
fashion and discharge assumptions as we move up towards the root. We illustrate the ideas
with an example.

Example 3. It is known that the following has no solution.

C1 : 2x1 + 3x2 ≥ 1
C2 : 3x1 − 4x2 ≤ 2
C3 : −x1 + 6x2 ≤ 3

x1, x2 ∈ Z

Note that (x1, x2) = (10
17 ,−

1
17 ) is an extreme point of the region defined by C1, C2, and

C3. Branching on the integer variable x1 leads to two cases:

1. A1 : x1 ≤ 0;

2. A2 : x1 ≥ 1.
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We consider each case in turn.
Case 1. A1 : x1 ≤ 0

Note that (x1, x2) = (0, 13 ) satisfies C1, C2, C3, A1. We branch on x2:

Case 1a. A3 : x2 ≤ 0

Taking C1 + (−2)×A1 + (−3)×A3 gives the absurdity C4 : 0 ≥ 1.

Case 1b. A4 : x2 ≥ 1

Taking
(
− 1

3

)
× C3 +

(
− 1

3

)
×A1 + 2×A4 gives the absurdity C5 : 0 ≥ 1.

Case 2. A2 : x1 ≥ 1
Taking

(
− 1

4

)
× C2 +

(
3
4

)
×A2 gives C6 : x2 ≥ 1

4 . Rounding gives C7 : x2 ≥ 1.

Taking
(
− 1

3

)
× C2 + (−1)× C3 + 14

3 × C7 gives the absurdity C8 : 0 ≥ 1.

As all cases lead to 0 ≥ 1, we conclude that there is no solution. To issue a certificate
as a list of derived constraints, we need a way to specify the different cases. To this end,
we allow the introduction of constraints as assumptions.

Figure 1 shows conceptual certificate for the problem. Notice how the constraints A1,
A2, A3, and A4 are introduced to the certificate as assumptions. Since we want to end
with 0 ≥ 1 without additional assumptions attached, we get there by gradually undoing
the case-splitting operations. We call the undoing operation unsplitting. For example, C4
and C5 are both the absurdity 0 ≥ 1 with a common assumption A1. Since A3 ∨ A4 is
true for all feasible x, we can infer the absurdity C9 : 0 ≥ 1 assuming only A1 in addition
to the original constraints. We say that C9 is obtained by unsplitting C4, C5 on A3, A4.
Similarly, both C8 and C9 are the absurdity 0 ≥ 1 and A2∨A1 is true for all feasible x, we
can therefore unsplit on C8, C9 on A2, A1 to obtain C10 : 0 ≥ 1 without any assumption
in addition to the original constraints.

Given
x, y ∈ Z

C1 : 2x1 + 3x2 ≥ 1
C2 : 3x1 − 4x2 ≤ 2
C3 : −x1 + 6x2 ≤ 3

Derived Reason Assumptions
A1 : x1 ≤ 0 {assume}
A2 : x1 ≥ 1 {assume}
A3 : x2 ≤ 0 {assume}
C4 : 0 ≥ 1 {C1 + (−2)×A1 + (−3)×A3} A1, A3
A4 : x2 ≥ 1 {assume}
C5 : 0 ≥ 1

{(
− 1

3

)
× C3 +

(
− 1

3

)
×A1 + 2×A4

}
A1, A4

C6 : x2 ≥ 1
4

{(
− 1

4

)
× C2 +

(
3
4

)
×A2

}
A2

C7 : x2 ≥ 1 {round up C6} A2
C8 : 0 ≥ 1

{(
− 1

3

)
× C2 + (−1)× C3 + 14

3 × C7
}

A2
C9 : 0 ≥ 1 {unsplit C4, C5 on A3, A4} A1
C10 : 0 ≥ 1 {unsplit C8, C9 on A2, A1}

Figure 1: Certificate for Example 3

In practice, the list of assumptions associated with each derived constraint needs not be
pre-specified as it can be deduced on the fly by a checker. For example, when processing
C4, we see that it uses A1 and A3, both of which are assumptions. Hence, we associate
C4 with the list of assumptions A1, A3.
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As any linear inequality can be introduced as an assumption, branching can in fact be
on general disjunctions.

We now show conceptually how our proposed certificate format accommodates split
cuts for (MIP ). The discussion that follows focuses on split cuts at the root node but the
ideas readily extend to split cuts at other nodes.

We say that aTx ≥ β dominates a′
T
x ≥ β′ only if a = a′ and β ≥ β′, or a = 0 and

β > 0.
Let a ∈ Zn be such that ai = 0 for i /∈ I. Let δ ∈ Z. Recall that the inequality dTx ≥ β

is a split cut if it is valid for the convex hull of {x ∈ Rn : aTx ≤ δ∨aTx ≥ δ+ 1, C(x), xi ∈
Z ∀ i ∈ I}. The split cut can then be specified in the certificate as follows: Introduce
A : aTx ≤ δ as an assumption and list S : dTx ≥ β with the associated reason being
dominated by a suitable linear combination of A and C(x) Then introduce A′ : aTx ≥ δ+1
as an assumption and list S′ : dTx ≥ β with the reason being dominated by a suitable
linear combination of A′ and C(x). Then list C : dTx ≥ β with {unsplit S, S′ on A,A′} as
the reason. To verify C, the following conditions must be checked:

1. A and A′ must be aTx ≤ δ and aTx ≥ δ + 1, though not necessarily in that order,
with δ ∈ Z and ai ∈ Z for all i ∈ I and ai = 0 for all i /∈ I.

2. D dominates C and D′ dominates C

The assumption list of C contains all the assumptions of D and D′ except A and A′.

5 Computational experiments

In this section, we describe software developed to produce and check certificates for MILP
results using the certificate format developed in this paper. Software and resources are
provided at: https://github.com/ambros-gleixner/VIPR
We again emphasize that the format was designed with simplicity in mind; the certificate
verification program we have provided is merely a reference and others should be able
to write their own verifiers without much difficulty, even without knowledge of how MIP
solvers operate.

The supporting documentation provides a more detailed technical description of the file
format along with examples. A feature of the file format is that along with each derived
constraint, the largest index of any derived constraint that references it is specified, thus
allowing constraints to be freed from memory when they will no longer be needed as
a certificate is being read and verified, leading to reduced memory consumption. The
following C++ programs are provided:

• viprchk. A program that verifies MILP results provided in our specified file format.
All computations are performed in exact rational arithmetic using the GMP library
[19].

• viprttn. A program that performs simple modifications to “tighten” certificates.
For each derived constraint, it computes the largest index over constraints referencing
the target constraint to reduce memory required by a checker. It also has an option
to remove unnecessary derived constraints.

• vipr2html. A program that converts a certificate file to a “human-readable” HTML
file.

We also created a modified version of the exact rational MIP solver described in [11]
and used it to compute certificates for several MIP instances from the literature. The exact
rational MIP solver is based on SCIP [18] and uses a hybrid of floating-point and exact
rational arithmetic to efficiently compute exact solutions using a pure branch-and-bound
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Table 1: Aggregated computational results over 106 instances from [11].

SCIP SCIP+C VIPR

Test set N Nsol tMIP Nsol tMIP tttn tchk sizeraw sizettn sizegz

easy-all 56 53 62.0 39 180.8 25.8 28.9 214 72 22
-solved 39 39 23.2 39 48.0 9.6 13.4 77 34 10
-memout 5 4 600.6 0 1769.4 377.5 169.8 10286 513 159
-timeout 12 10 357.4 0 3600.0 83.7 97.5 1151 368 108

hard-all 50 23 725.1 14 976.6 31.2 15.1 372 38 11
-solved 13 13 22.9 13 40.8 7.1 6.3 49 15 5
-memout 10 0 3600.0 0 1833.9 275.7 53.8 10269 146 39
-timeout 27 10 1811.1 1 3255.1 20.7 11.9 286 35 9

algorithm. In our experiments, the rational MIP solver uses CPLEX 12.6.0.0 [26] as its
underlying floating-point LP solver and a modified version of QSopt ex 2.5.10 [5] as its
underlying exact LP solver. The exact MIP solver supports several methods for computing
valid dual bounds and our certificate printing functionality is currently supported by the
Project-and-shift method (for dual solutions only) and the Exact LP method (for both
dual solutions and Farkas proofs), for details on these methods see [11]. Future plans are
to include certificate printing functionality in all dual bounding methods and release this
in subsequent versions of exact SCIP; our developmental version is currently available from
the authors by request.

In the following, we report some computational results on the time and memory required
to produce and verify certificates. We considered the easy and numerically difficult (referred
to here as ‘hard ’) test sets from [11]; these test sets consist of instances from well known
libraries including [2, 7, 29, 31, 32].

Experiments were conducted on a cluster of Intel(R) Xeon(R) CPU E5-2660 v3 at
2.60GHz; jobs were run exclusively to ensure accurate time measurement. Table 1 reports
a number of aggregate statistics on these experiments. The columns under the heading
SCIP report information on tests using the exact version of SCIP, using its default dual
bounding strategy. The columns under SCIP+C report on tests involving the version of
exact SCIP that generates certificates as it solves instances; since certificate printing is
not supported for all dual bounding methods it uses only a subset of the dual bounding
methods, contributing to its slower speed. Columns under the heading VIPR report time
and memory usage for certificate checking. For each of the easy and hard test sets, we
report information aggregated into four categories: ‘all’ reports statistics over all instances;
‘solved’ reports over instances solved by both SCIP and SCIP+C within a 1 hour time limit
and a 10gb limit on certificate file size, ‘memout’ and ‘timeout’ report on instances where
one of the solvers experienced a filesize limit or timeout. All averages are reported as
shifted geometric means with a shift of 10 sec. for time and 1mb for memory. The column
N represents the number of instances in each category; Nsol represents the number in each
category that were solved to optimality (or infeasibility) by a given solver; tMIP represents
the time (sec.) used to solve the instance and, when applicable, output a certificate; tttn
is the time (sec.) required by the viprttn routine to tighten the certificate file; tchk is
the time (sec.) required to for viprchk to check the certificate file – on instances in the
memout and timeout rows this represents the time to verify the primal and dual bounds
present in the intermediate certificate printed before the solver was halted. The final three
columns list the size of the certificate (in mb), before tightening, after tightening and then
after being compressed to a gzipped file. The instance nw04 is excluded from the easy test
set due to a memout by the viprttn routine. Timings and memory usage for individual
instances are available in a document hosted together with the accompanying software.

From this table, we can make a number of observations. First, there is a noticeable,

8



but not prohibitive, cost to generate the certificates. The differences in tMIP between SCIP
and SCIP+C are due to both the difference in dual bounding strategies, and the overhead
for writing the certificate files. In some additional experiments, we observed that on the 39
instances in the easy-solved category, the file I/O amounted to roughly 7% of the solution
time, based on this we believe that future modifications to the code will allow us to solve
and print certificates in times much closer to those in the SCIP column. Perhaps most
importantly, we observe that the time to check the certificates is significantly less than the
time to solve the instances. Moreover, the certificate tightening program viprttn is able
to make significant reductions in the certificate size, and the resulting certificate sizes are
often surprisingly manageable.

6 Conclusion

This paper presented a certificate format for verifying integer programming results. We
have demonstrated the practical feasibility of generating and checking such certificates on
well-known MIP instances. We see this as the first step of many in verifying the results of
integer programming solvers. We now discuss some future directions made possible by this
work.

Even in the context of floating-point arithmetic, our certificate format could serve a
number of purposes. Using methods described by [10, 33], directed rounding and inter-
val arithmetic may allow us to compute and represent valid certificates exclusively using
floating-point data, allowing for faster computation and smaller certificate size. Addition-
ally, generating approximate certificates with inexact data could be used for debugging
solvers, or measuring the maximum or average numerical violation over all derivations. In
a more rigorous direction, one could also convert our certificates to a form that could be
formally verified by a proof assistant such as HOL Light [22].

Finally, we note that there are many potential ways to further simplify or optimize the
certificates, beyond what is done by our viprttn routine. One natural adjustment is to
reorder the deduction steps to minimize memory requirement by a checker, but much more
is possible in this direction.
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