5,049 research outputs found

    Testing statistical bounds on entanglement using quantum chaos

    Full text link
    Previous results indicate that while chaos can lead to substantial entropy production, thereby maximizing dynamical entanglement, this still falls short of maximality. Random Matrix Theory (RMT) modeling of composite quantum systems, investigated recently, entails an universal distribution of the eigenvalues of the reduced density matrices. We demonstrate that these distributions are realized in quantized chaotic systems by using a model of two coupled and kicked tops. We derive an explicit statistical universal bound on entanglement, that is also valid for the case of unequal dimensionality of the Hilbert spaces involved, and show that this describes well the bounds observed using composite quantized chaotic systems such as coupled tops.Comment: 5 pages, 3 figures, to appear in PRL. New title. Revised abstract and some changes in the body of the pape

    Efficient generation of random multipartite entangled states using time optimal unitary operations

    Get PDF
    We review the generation of random pure states using a protocol of repeated two qubit gates. We study the dependence of the convergence to states with Haar multipartite entanglement distribution. We investigate the optimal generation of such states in terms of the physical (real) time needed to apply the protocol, instead of the gate complexity point of view used in other works. This physical time can be obtained, for a given Hamiltonian, within the theoretical framework offered by the quantum brachistochrone formalism. Using an anisotropic Heisenberg Hamiltonian as an example, we find that different optimal quantum gates arise according to the optimality point of view used in each case. We also study how the convergence to random entangled states depends on different entanglement measures.Comment: 5 pages, 2 figures. New title, improved explanation of the algorithm. To appear in Phys. Rev.

    The Information Geometry of the Ising Model on Planar Random Graphs

    Full text link
    It has been suggested that an information geometric view of statistical mechanics in which a metric is introduced onto the space of parameters provides an interesting alternative characterisation of the phase structure, particularly in the case where there are two such parameters -- such as the Ising model with inverse temperature β\beta and external field hh. In various two parameter calculable models the scalar curvature R{\cal R} of the information metric has been found to diverge at the phase transition point βc\beta_c and a plausible scaling relation postulated: R∼∣β−βc∣α−2{\cal R} \sim |\beta- \beta_c|^{\alpha - 2}. For spin models the necessity of calculating in non-zero field has limited analytic consideration to 1D, mean-field and Bethe lattice Ising models. In this letter we use the solution in field of the Ising model on an ensemble of planar random graphs (where α=−1,β=1/2,γ=2\alpha=-1, \beta=1/2, \gamma=2) to evaluate the scaling behaviour of the scalar curvature, and find R∼∣β−βc∣−2{\cal R} \sim | \beta- \beta_c |^{-2}. The apparent discrepancy is traced back to the effect of a negative α\alpha.Comment: Version accepted for publication in PRE, revtex

    On observability of Renyi's entropy

    Get PDF
    Despite recent claims we argue that Renyi's entropy is an observable quantity. It is shown that, contrary to popular belief, the reported domain of instability for Renyi entropies has zero measure (Bhattacharyya measure). In addition, we show the instabilities can be easily emended by introducing a coarse graining into an actual measurement. We also clear up doubts regarding the observability of Renyi's entropy in (multi--)fractal systems and in systems with absolutely continuous PDF's.Comment: 18 pages, 1 EPS figure, REVTeX, minor changes, accepted to Phys. Rev.

    Long-range correlations in the wave functions of chaotic systems

    Get PDF
    We study correlations of the amplitudes of wave functions of a chaotic system at large distances. For this purpose, a joint distribution function of the amplitudes at two distant points in a sample is calculated analytically using the supersymmetry technique. The result shows that, although in the limit of the orthogonal and unitary symmetry classes the correlations vanish, they are finite through the entire crossover regime and may be reduced only by localization effects.Comment: 4 pages RevTex + 2 fig

    Spectral statistics of the k-body random-interaction model

    Full text link
    We reconsider the question of the spectral statistics of the k-body random-interaction model, investigated recently by Benet, Rupp, and Weidenmueller, who concluded that the spectral statistics are Poissonian. The binary-correlation method that these authors used involves formal manipulations of divergent series. We argue that Borel summation does not suffice to define these divergent series without further (arbitrary) regularization, and that this constitutes a significant gap in the demonstration of Poissonian statistics. Our conclusion is that the spectral statistics of the k-body random-interaction model remains an open question.Comment: 17 pages, no figure

    Two-parametric PT-symmetric quartic family

    Full text link
    We describe a parametrization of the real spectral locus of the two-parametric family of PT-symmetric quartic oscillators. For this family, we find a parameter region where all eigenvalues are real, extending the results of Dorey, Dunning, Tateo and Shin.Comment: 23 pages, 15 figure

    Martingale Models for Quantum State Reduction

    Get PDF
    Stochastic models for quantum state reduction give rise to statistical laws that are in most respects in agreement with those of quantum measurement theory. Here we examine the correspondence of the two theories in detail, making a systematic use of the methods of martingale theory. An analysis is carried out to determine the magnitude of the fluctuations experienced by the expectation of the observable during the course of the reduction process and an upper bound is established for the ensemble average of the greatest fluctuations incurred. We consider the general projection postulate of L\"uders applicable in the case of a possibly degenerate eigenvalue spectrum, and derive this result rigorously from the underlying stochastic dynamics for state reduction in the case of both a pure and a mixed initial state. We also analyse the associated Lindblad equation for the evolution of the density matrix, and obtain an exact time-dependent solution for the state reduction that explicitly exhibits the transition from a general initial density matrix to the L\"uders density matrix. Finally, we apply Girsanov's theorem to derive a set of simple formulae for the dynamics of the state in terms of a family of geometric Brownian motions, thereby constructing an explicit unravelling of the Lindblad equation.Comment: 30 pages LaTeX. Submitted to Journal of Physics

    Biorthogonal quantum mechanics

    Get PDF
    The Hermiticity condition in quantum mechanics required for the characterization of (a) physical observables and (b) generators of unitary motions can be relaxed into a wider class of operators whose eigenvalues are real and whose eigenstates are complete. In this case, the orthogonality of eigenstates is replaced by the notion of biorthogonality that defines the relation between the Hilbert space of states and its dual space. The resulting quantum theory, which might appropriately be called 'biorthogonal quantum mechanics', is developed here in some detail in the case for which the Hilbert-space dimensionality is finite. Specifically, characterizations of probability assignment rules, observable properties, pure and mixed states, spin particles, measurements, combined systems and entanglements, perturbations, and dynamical aspects of the theory are developed. The paper concludes with a brief discussion on infinite-dimensional systems. © 2014 IOP Publishing Ltd

    Ordered and periodic chaos of the bounded one dimensinal multibarrier potential

    Full text link
    Numerical analysis indicates that there exists an unexpected new ordered chaos for the bounded one-dimensional multibarrier potential. For certain values of the number of barriers, repeated identical forms (periods) of the wavepackets result upon passing through the multibarrier potential.Comment: 16 pages, 9 figures, 1 Table. Some former text removed and other introduce
    • …
    corecore