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We study correlations of the amplitudes of wave functions of a chaotic system at large distan
For this purpose, a joint distribution function of the amplitudes at two distant points in a sample
calculated analytically using the supersymmetry technique. The result shows that although in the
of the orthogonal and unitary symmetry classes the correlations vanish, they are finite through the
crossover regime and may be reduced only by localization effects. [S0031-9007(96)00681-3]
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During the past decade, a substantial progress has
achieved in the studies of quantum properties of classic
chaotic systems [1]. At present, we have quite a comp
information about energy spectra of nonintegrable syste
in the limit of a “hard” chaos as well as in the crossov
regimes to integrability or localization. However, th
theoretical background for understanding the statistics
structure of wave functions of chaotic systems is stil
growing-up field stimulated by the recent experiments
electron transport in quantum dots under the Coulo
blockade conditions [2] and on the microwave irradiati
in disordered and chaotic cavities [3]. According to t
resonant tunneling models of the transport in the Coulo
blockade devices [4,5], the heightg of the conductance
peaks measured in the experiments on the quantum
can be related to the local amplitudeswasrl,rd of the wave
function of the resonant levelea as

g ­
e2yh
4pT

GlGr

Gl 1 Gr
,

where broadeningGl,r ~ jwasrl,r dj2 is due to the elec-
tron escape to the right- and left-hand-side electrodes
Hence the statistics of the resonant tunneling conductan
in this kind of measurements is determined by the s
tistics of the electron wave functions in the dot. Mor
over, the statistics and spatial correlation properties
microwaves in random media have become the subjec
direct measurements performed already in various pa
metric regimes [3].

Below, we demonstrate the existence of long-range c
relations in the wave functions of a chaotic system su
jected to a weak magnetic field, that is, in the crosso
regime between the orthogonal (with time-reversal sy
metry) and unitary (broken time-reversal symmetry) e
sembles. This conclusion is based on the analysis of
joint probability distribution functionf2sp1, p2d, which
describes the statistics of local densities of an eigens
in a chaotic cavity taken at two distant points in the sa
ple and its comparison with the statistics of a sing
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point distributionf1sp1d. The joint distribution functions
fN sp1, . . . , pN d of local densities of a wave function ar
defined for an arbitraryN as follows:

fN ­ D

*X
a

dse 2 ead
NY

n­1

dssspn 2 jwasrndj2ddd

+
, (1)

where the angular brackets stand for averaging over irre
larities in the system or over energiese [7] in a chaotic bil-
liard,V is the volume of the system, andD is the mean level
spacing. The sum in Eq. (1) is taken over all eigenstat
wa andea being eigenfunctions and eigenenergies. B
cause of the normalization of the distribution functionfN

and wave functions themselves, the lower order functio
fN21 can be related to the higher order ones after in
grating over some of variables [8]. The joint probabilit
distribution functionf2 naturally appears in the descrip
tion of fluctuations of the resonant tunneling conductan
peaks,g, in quantum dots or can be directly studied in th
microwave experiments [3].

Direct computation of the local density distributio
function f1 for disordered and chaotic systems in th
limiting cases of the orthogonal and unitary ensemb
[5,9,10] leads to the well-known Porter-Thomas formu
[11], which is merely a Gaussian distribution of wave fun
tion amplitudes. The Gaussian distribution has been
cently confirmed by the numerical studies of high-lyin
chaotic eigenstates [12]. It can also be derived semicla
cally assuming that classical orbits cover uniformly the e
ergy surface in the phase space [13]. The detailed anal
of the joint distribution functionf2 performed in Ref. [14]
for these two universality classes has shown that intrin
correlations in the wave functions of a chaotic system d
cay already on several wavelengths, and the functionf2

can be written at large distances as

f2sp1, p2d °! f1sp1df1sp2d , (2)

where the functionf1spd describes the Gaussian distribu
tion of local amplitudeswsrnd, pn ; V jwsrndj2. More-
over, one can provide a full analytical description of
© 1996 The American Physical Society
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decay of correlations of local amplitudes of chaotic wa
functions in each of the symmetry classes [14,15]. The
describing the decay of the correlations can be derived
ther using the supersymmetrics-model technique or with
Berry’s conjecture [13] about the uniform distribution
the classical orbits in the phase space [15], and the re
for the orthogonal case is in a good agreement with tha
the microwave experiments [3].

The suppression of correlations within a chaotic wa
function at large distances [Eq. (2)] seems to be so nat
for systems in which the semiclassical version of quan
mechanics deals with large random phases that it was
called into question also in the regime of a crosso
between the orthogonal and unitary symmetry clas
In this Letter we show that due to the Aharonov-Boh
effect, the intrinsic correlations implicit in a chaotic wa
function do not vanish at large distances in the en
crossover regime, although they do in the orthogonal
unitary limits (corresponding to zero and sufficiently hi
magnetic fields, respectively). In weak magnetic fiel
the correlations survive at distancesr ­ jr1 2 r2j much
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longer than the mean free pathl [that is, f2sp1, p2d fi

f1sp1df1sp2d].
Calculations presented below are performed using

supersymmetry technique [16]. In particular, the u
of this method enables one to calculate the one-po
distribution functionf1spd for an arbitrary magnetic field
[10] (a somewhat different although related quantity w
calculated in Ref. [17]). The functionf2 can be computed
in a similar way. Although the calculations are not mo
difficult than those in Ref. [10], they lead to the resu
about the long-range correlations which could not
extracted from the functionf1 alone.

To carry out the computations within the supersymme
scheme, one should write the quantities to be studied
terms of Green functions defined, as usual, as

GR,A
e sr1, r2d ­

X
a

wasr1dwp
asr2dyfe 2 ea 6 igy2g .

It is not difficult to show that the distribution functionf2,
Eq. (1), can be represented as follows:
f2sp1, p2d ­
D

p
lim
b!1

g!0

≠

≠b

ø
b

Z 1

0
dt

Z
dr ImfGA

e sr, rdgdfp1 1 iYAGA
e sr1, r1dgdfp2 2 iYRGR

e sr2, r2dg
¿

, (3)
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where YA ­ gbVt and YR ­ gbV s1 2 td. Next, we
express the Green functions entering Eq. (3) in terms
integrals over supervectorsc with the LagrangianL,

Lfcg ­ i
Z

csrd fe 2 Ĥ0 2 Usrd 2 igLy2gcsrd dr ,

where Ĥ0 is the free particle Hamiltonian andUsrd
describes the impurity potential. The diagonal matrixL

has componentsL11 ­ 2L22 ­ 1, and c is an eight-
component supervector containing both commutings and
anticommutingx elements. The reduction of Eq. (3) t
the integral over the supervectorsc can be done by
expandingd functions in the Green functionsGR

e and
GA

e and using standard formulas of Gaussian integrat
Then one averages over the irregularities and, finally, u
f

.
es

the Hubbard-Stratonovich transformation to decouple
“interaction” term sccd2 obtained after this averaging
by an integration over the supermatrix fieldQ. This
gives us a possibility to integrate over the supervect
c and to reduce the following computation to that
an integral over the supermatricesQ. Integrating over
the supervectorc, we take into account only pairing a
coinciding points. The approximation is justified provide
the distance between the pointsr1 and r2 is large
enough (much larger than the wavelength). This me
that we consider the asymptotic form of the distributio
function of local amplitudes of the wave function taken
essentially distant points. All manipulations are stand
[10,16], and we get
f2sp1, p2d ­ lim
b!1

g!0

d
db

ø
b

2

Z dz1dz2

s2pd2

Z 1

0
dt sQ11

11 2 Q22
11dd

µ
p1 2

tgb

2D
z1Qz1

∂
d

µ
p2 1

s1 2 tdgb

2D
z2Qz2

∂¿
Q

, (4)
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er-
ix
ry

r

where k· · ·lQ stands for the integration over su
permatrices Q with the free energy FfQg, and
z2 ­ s0, 0, 0, 0, 0, 0, eiz2 , e2iz2 d, z1 ­ s0, 0, eiz1 , 0, 0, 0, 0d.
In the presence of a magnetic field,FfQg is given by [18]

F ­ 2Str

µ
pg

4D
LQ 1

µ
X
4

∂2

fQ, t3g2

∂
, (5)

X2 ­ 2p
D
D

Z dr
V

µ
2pAsrd

f0

∂2

­ ag
f2

f
2
0

Ec

D
,

where f0 ­ hcye is the flux quantum,ag is the sam-
ple geometry dependent factor,D is the classical diffusion
coefficient, andEc is the Thouless energy. Equations (
and (5) are written under the assumption that the sup
matrix s model describing fluctuations of the supermatr
Q is zero dimensional (0D), which is correct for not ve
large p1,2. The distribution functionf2 can also be cal-
culated for arbitraryp1,2 in a way that has been done fo
the functionf1 in Ref. [19]. This would require going
913
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beyond the 0Ds model and is out of the scope of th
publication.

Calculation of the integral overQ in Eq. (4) can
be carried out using the parametrization suggeste
Ref. [18], which separates “Cooperon” and “diffuso
variables. The quantum limitg ! 0 considerably simpli-
fies the integration over the diffuson variables, since
main contribution comes from that part of the nonco
pact sector of the order parameterQ where jznQznj ,
1yg ! `. In this limit, the diffuson degrees of free
dom can be integrated out, and one ends up with a
sion of some kind of a reduceds model adapted fo
describing the properties of a single quantum state
la
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r
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and containing only the integration over the Cooper
variables,

fN sp1, . . . , pN d ­
Z 1

0
dlc

Z `

1
dl1c exps2Ffd

3
l2

c

sl2
1c 2 l2

cd2

Z
P

NY
n­1

dzn

2p

3
exps2pnyAnd

An
dRc .

Hereby,N ­ 1, 2, An ­ 1 1 ResLeizn yPd and
P ­ l1c 1 2shchp
c 2 kckp

c d sl1c 2 lcd, L ­
q

l
2
1c 2 1 s1 1 2hchp

c d s1 2 2kckp
cd 1 4

q
1 2 l2

c hckc .
c

l

tes
ed
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me:
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Note that dRc ­ dhcdhp
cdkp

cdkc, with hc, hp
c , kc, kp

c
being Grassmann anticommuting variables.

Skipping technical details of the algebraic manipu
tions, we are able to represent the joint distribution fun
tion fN , N ­ 1, 2, in the form

fN ­
Z `

1
BsX, xd

NY
n­1

Mspn, xd dx , (6)

where
BsX, xd ­ X2fsxX2 2 1dF2sXd 1 F1sXdge2X2sx21d,

Msp, xd ­
p

x exps2pxdI0

≥
p

p
x2 2 x

¥
.

HereI0szd is the modified Bessel function, and

F1sXd ­
e2X2

X

Z X

0
ey2

dy, F2sXd ­
1 2 F1sXd

X2 .

The joint distribution function of this form satisfies th
normalization condition described in footnote [8].

In order to establish the presence or absence of co
lations between fluctuations of the valuesp1,2 ; jwsr1,2dj
at distant points in the sample in the crossover regim
the joint probability distribution functionf2 and its
moments have to be compared to the distribution funct
f1. Explicit integration overx in Eqs. (6) shows that
in each of two limits X ! 0 and X ! `, f2sp1, p2d
takes a separable form and satisfies Eq. (2). That
f2sp1, p2d ­ Pi­1,2e2piy2y

p
2ppi in the orthogonal

case andf2sp1, p2d ­ exps2p1 2 p2d in the unitary
one. However, the distribution function is not separab
at any finite magnetic field, which means that even in
limit of a large distance between the pointsr1 andr2 the
correlations do not vanish.

To illustrate the existence of long-range correlatio
implicit in each individual wave function in a quantum
billiard subjected to a weak magnetic field,we calculate
the correlation functionK2,2sXd defined as [20]

K2,2 ­
Z `

0
dp1dp2p2

1p2
2 f f2sp1, p2d 2 f1sp1df1sp2dg .

Although an analytical expression forK2,2 can be found
from Eqs. (6) using the identity from footnote [8], we giv
-
-

re-

e,

n

is,

e
e

here only its graphic representation. Figure 1 illustra
how the correlations evolve as a function of a normaliz
flux through the sample area. As one can see from Fig
the correlations are present all over the crossover regi
from the smallest to highest values of the normalized fl
f. These correlations are never strong (of the order
1%), since the maximal value of the correlator maxsK2d ø
0.05 has to be compared to the square of the seco
momentP2 ­

R
dpp2 f1spd, which varies from the value

of 3 to 2 in between the orthogonal and unitary symme
classes.

The distant correlations in the wave functions c
be also traced in the joint probability to find simu
taneously two zeros of the wave functionwsr1,2d ­
0. At small fluxes corresponding toX ø 1, f f1s0dg2 ø
4p

9 X22, whereasf2s0, 0d ø 5
3 X22. Since the crossover

between the orthogonal and unitary ensembles occur
relatively small magnetic fluxes through the sample ar
f , f0sDyEcd1y2, the nonseparability off2sp1, p2d as a
whole is most pronounced whenX , 1. In Fig. 2 we
show the difference betweenf2 andf1f1 at X ­ 1.

FIG. 1. The correlation functionK2,2sXd as a measure of
spatial correlation implicit to a chaotic wave function.
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FIG. 2. The difference betweenf2 and f1f1 normalized by
f1f1 for X ­ 1.

Starting from the pioneering work by Berry [13],
was generally believed that in classically ergodic syste
the local wave function density can be imagined a
result of superposition of an infinite number plane wa
with random phases and equal momenta. The random
of the phases suggests the Gaussian randomnes
the amplitudewa and vanishing correlations at larg
distances. Our result means that a weak magnetic
through the sample area introduces some correlat
in wasrd related to the fact that the Aharonov-Boh
phases taken by an electron moving in a quantum bill
cannot be arbitrarily large. The lengths of geometri
paths attributed to an electron classical trajectory i
semiclassical picture of quantum mechanics are limi
since the semiclassics breaks down at the time s
longer than the Heisenberg time,tH , hyD. Hence the
encircled magnetic field fluxes are also limited, so that
classical ergodicity does not always lead to the comp
randomness of the wave function phases.

The correlations discussed above persist all over
chaotic quantum billiard. One may ask a question ab
what happens if the sample size is much larger t
the mean free path in a disordered system. In fact,
result of Eq. (6) is valid as far as the 0Ds model
may be used, that is, unless localization effects bec
important. Hence in 1D and 2D weakly disorder
samples the distance between the observation points
be smaller than the localization length, whereas in
3D metal the distance between them is not limit
The correlations can be considerably reduced also
large values of amplitudes originated from prelocaliz
states. In this case, one has to go beyond the 0Ds

model [19,21].
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In conclusion, the joint distribution function of ampli
tudes of chaotic wave functions is derived for an arbitra
magnetic flux. Its form manifests the long-range spat
correlations existing in the entire crossover regime fro
orthogonal to unitary symmetry classes. This indica
that due to the Aharonov-Bohm effect the phases of
wave functions may be correlated even if the correspo
ing classical motion is ergodic, which has not been anti
pated in previous semiclassical theories.

One of us (V. F.) thanks EPSRC for financial suppo
and MPI-PKS for hospitality.

[1] Chaos and Quantum Systems,edited by M-J. Giannoni,
J. Voros, and Zinn-Justin (Amsterdam, North-Hollan
1991); F. Haake,Quantum Signatures of Chaos(Springer,
Berlin, 1992).

[2] A. M. Changet al.,Phys. Rev. Lett.76, 1695 (1996); J. A.
Folk et al., ibid.76, 1711 (1996).

[3] A. Kudrolli, V. Kidambi, and S. Sridhar, Phys. Rev. Lett
75, 822 (1995); V. N. Prigodinet al., ibid. 75, 2392
(1995).

[4] R. G. Jalabert, A. D. Stone, and Y. Alhassid, Phys. Re
Lett. 68, 3468 (1992).

[5] V. N. Prigodin, K. B. Efetov, and S. Iida,ibid. 71, 1230
(1993).

[6] This formula for the resonance conductance correspo
to the limit of T ¿ G. Other regimes were studied in [5]

[7] O. Agam, B. L. Altshuler, and A. V. Andreev, Phys
Rev. Lett. 75, 4389 (1995); A. V. Andreevet al. (to be
published).

[8] The functions fN sp1, . . . , pN d obey the normalization
conditions

R`

0 dpN fN sp1, . . . , pN d ­ fN21sp1, . . . , pN21d
and

R
`

0 pN dpN fN sp1, . . . , pN d ­ fN21sp1, . . . , pN21d. Its
validity may be checked in the final result of thi
paper using the identity

R`

0 dp exps2apdI0sbpd ­ fa2 2

b2g21y2.
[9] K. B. Efetov and V. N. Prigodin, Phys. Rev. Lett.70, 1315

(1993); Mod. Phys. Lett. B7, 981 (1993); A. D. Mirlin
and Y. V. Fyodorov, J. Phys. A26, L551 (1993).

[10] V. I. Fal’ko and K. B. Efetov, Phys. Rev. B50, 11 267
(1994).

[11] T. A. Brody et al., Rev. Mod. Phys.53, 385 (1981).
[12] B. Li and M. Robnik, J. Phys. A27, 5509 (1994).
[13] M. V. Berry, J. Phys. A10, 2083 (1977).
[14] V. N. Prigodin, Phys. Rev. Lett.74, 1566 (1995);

E. Muciollo et al., ibid.75, 1360 (1995).
[15] M. Srednicki, Report No. cond-maty9512115.
[16] K. B. Efetov, Adv. Phys.32, 53 (1983).
[17] H.-J. Sommers and S. Iida, Phys. Rev. E49, 2513 (1994);

K. Zyczkowsky and G. Lenz, Z. Phys. B82, 299 (1991).
[18] A. Altland et al.,J. Phys. A26, 3545 (1993); K. B. Efetov

and S. Iida, Phys. Rev. B47, 15 794 (1993).
[19] V. I. Fal’ko and K. B. Efetov, Europhys. Lett.32, 627

(1995); Phys. Rev. B52, 17 413 (1995).
[20] Because of the normalization of the wave functionwa ,

K2,2 is the lowest-order nontrivial correlation function.
[21] B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B

51, 5480 (1995).
915


