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We study correlations of the amplitudes of wave functions of a chaotic system at large distances.
For this purpose, a joint distribution function of the amplitudes at two distant points in a sample is
calculated analytically using the supersymmetry technique. The result shows that although in the limit
of the orthogonal and unitary symmetry classes the correlations vanish, they are finite through the entire
crossover regime and may be reduced only by localization effects. [S0031-9007(96)00681-3]

PACS numbers: 73.20.Dx, 05.45.+b, 71.20.-b

During the past decade, a substantial progress has bepaint distributionf;( p;). The joint distribution functions
achieved in the studies of quantum properties of classicallyy(p1, ..., py) of local densities of a wave function are
chaotic systems [1]. At present, we have quite a completdefined for an arbitraril as follows:
information about energy spectra of nonintegrable systems N
in the limit of a “hard” chaos as well as in the crossover fy = A<Z 5(e — €,) l_[ 8(pn — |g0a(rn)|2)>, ()
regimes to integrability or localization. However, the @ n=1
theoretical background for understanding the statistics anglhere the angular brackets stand for averaging over irregu-
structure of wave functions of chaotic systems is still ajarities in the system or over energie§7] in a chaotic bil-
growing-up field stimulated by the recent experiments onjard, V is the volume of the system, andis the mean level
electron transport in quantum dots under the Coulomipacing. The sum in Eq. (1) is taken over all eigenstates,
blockade conditions [2] and on the microwave irradiati0n¢a and €q being eigenfunctions and eigenenergies_ Be-
in disordered and chaotic cavities [3]. According to thecause of the normalization of the distribution functifn
resonant tunneling models of the transport in the CoulomBnd wave functions themselves, the lower order functions
blockade devices [4,5], the heigbtof the conductance ¢, | can be related to the higher order ones after inte-
peaks measured in the experiments on the quantum doggating over some of variables [8]. The joint probability
can be related to the local amplitudes(r, ) of the wave  djstribution functionf, naturally appears in the descrip-

function of the resonant level, as tion of fluctuations of the resonant tunneling conductance
’ peaksg, in quantum dots or can be directly studied in the
e /h I‘IF, . .
g = — microwave experiments [3].
47T F[ + Fr

Direct computation of the local density distribution
where broadening () s due o th clec. BCIon /o isordered and chaotc eysens n e
tron escape to the right- and left-hand-side electrodes [6 9 18] leads to the weII—kr?own Porter—Thor)rl1as formula
Hence the statistics of the resonant tunneling conductancés, '~ ="~ " : C

1], which is merely a Gaussian distribution of wave func-

in this kind of measurements is determined by the Stafion amplitudes. The Gaussian distribution has been re-

tistics of the electron wave functions in the dot. More_?ently confirmed by the numerical studies of high-lying

over, the statistics and spatial correlation properties o L : . .
microwaves in random media have become the subject cS:Ihaotlc eigenstates [12]. It can also be derived semiclassi-

; . . cally assuming that classical orbits cover uniformly the en-
direct measurements performed already in various para- yass 9 classical o co ormty

. : ergy surface in the phase space [13]. The detailed analysis
metric regimes [3]. C . )
Below, we demonstrate the existence of long-range cor(—)f the joint distribution functiory, performed in Ref. [14]

relations in the wave functions of a chaotic system sypfor these two universality classes has shown that intrinsic

jected to a weak magnetic field, that is, in the crossove?orrelaﬁons in the wave functions of a chaotic system de-
’ ’ cay already on several wavelengths, and the funcfion

regime between the orthogonal (with time-reversal SYM o be written at larae distances as
metry) and unitary (broken time-reversal symmetry) en- 9

sembles. This conclusion is based on the analysis of the . 2
joint probability distribution functionf,(p, p2), which faprp2) Silpofi(p2). @
describes the statistics of local densities of an eigenstatghere the functiory;(p) describes the Gaussian distribu-
in a chaotic cavity taken at two distant points in the samdtion of local amplitudesp(r,), p, = V]e(r,)|>. More-

ple and its comparison with the statistics of a single-over, one can provide a full analytical description of a
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decay of correlations of local amplitudes of chaotic wavelonger than the mean free paththat is, f2(p1, p2) #

functions in each of the symmetry classes [14,15]. The law;(p1)f1(p2)].

describing the decay of the correlations can be derived ei- Calculations presented below are performed using the

ther using the supersymmetic-model technique or with  supersymmetry technique [16]. In particular, the use

Berry’s conjecture [13] about the uniform distribution of of this method enables one to calculate the one-point

the classical orbits in the phase space [15], and the resufistribution functionf,( p) for an arbitrary magnetic field

for the orthogonal case is in a good agreement with that ofL0] (a somewhat different although related quantity was

the microwave experiments [3]. calculated in Ref. [17]). The functiofy can be computed
The suppression of correlations within a chaotic wavean a similar way. Although the calculations are not more

function at large distances [Eq. (2)] seems to be so naturalifficult than those in Ref. [10], they lead to the result

for systems in which the semiclassical version of quantumabout the long-range correlations which could not be

mechanics deals with large random phases that it was neitracted from the functioyi; alone.

called into question also in the regime of a crossover To carry outthe computations within the supersymmetry

between the orthogonal and unitary symmetry classescheme, one should write the quantities to be studied in

In this Letter we show that due to the Aharonov-Bohmterms of Green functions defined, as usual, as

effect, the intrinsic correlations implicit in a chaotic wave

function do not vanish at large distances in the entire ~r.A _ # _ +

crossover regime, although they do in the orthogonal and G v r) Z ealr)eqr)/le = ea = iv/2].

unitary limits (corresponding to zero and sufficiently high

magnetic fields, respectively). In weak magnetic fields/t is not difficult to show that the distribution functiofy,

the correlations survive at distances= |r; — r| much  Eq. (1), can be represented as follows:

Polprp) = 2 i 2o [ ar [ armicieniote + wGHerolp: - eGEEr). @

|

where Y, = yBVt and Yr = yBV(1 — t). Next, we the Hubbard-Stratonovich transformation to decouple the
express the Green functions entering Eqg. (3) in terms dfinteraction” term (44)> obtained after this averaging
integrals over supervectoys with the Lagrangiar., by an integration over the supermatrix fie@@. This

R s . gives us a possibility to integrate over the supervectors
Lyl = lj w(r)le = Ho = Ulr) = iyA/2]p(x) dr, ¢ and to reduce the following computation to that of
where H, is the free particle Hamiltonian and/(r) an integral over the supermatric€s Integrating over
describes the impurity potential. The diagonal matkix the supervectors, we take into account only pairing at
has components\!! = —A?? =1, and ¢ is an eight- coinciding points. The approximation is justified provided
component supervector containing both commusrammd  the distance between the pointg and r, is large
anticommutingy elements. The reduction of Eqg. (3) to enough (much larger than the wavelength). This means
the integral over the supervectors can be done by that we consider the asymptotic form of the distribution
expandings$ functions in the Green function&® and function of local amplitudes of the wave function taken at
G4 and using standard formulas of Gaussian integratioressentially distant points. All manipulations are standard
Then one averages over the irregularities and, finally, usg40,16], and we get

) =t (B [ 409 [ 011 - 031s( 1~ 25,01 )o( o+ 150 505, ), @

- dp Qm)? 2A 24

I
where (.--)p stands for the integration over su- where ¢g = hc/e is the flux quantumge, is the sam-
permatrices Q with the free energy F[Q], and ple geometry dependent fact@,is the classical diffusion
Z» = (0,0,0,0,0,0, ¢/, e71%),7; = (0,0,¢4,0,0,0,0).  coefficient, andE, is the Thouless energy. Equations (4)
In the presence of a magnetic field,Q] is given by [18] and (5) are written under the assumption that the super-
matrix o model describing fluctuations of the supermatrix

F = —Str( Y AQ + < ) [0, 7-3]2> (5) Qs zero dimensional (OD), which is correct for not very
large p1». The distribution functionf, can also be cal-

_,- D [ dr <27TA(r)> N ¢ E. culated for arbitraryp, », in a way that has been done for
S g A the function f; in Ref. [19]. This would require going
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beyond the ODo model and is out of the scope of this and containing only the integration over the Cooperon
publication. variables,

Calculation of the integral oveQ in Eg. (4) can
be carried out using the parametrization suggested in 1 o
Ref. [18], which separates “Cooperon” and “diffuson”  fnx(p1,....,pn)= f d)\cf dAy. exp(—F(;,)
variables. The quantum limit — 0 considerably simpli- !

fies the integration over the diffuson variables, since the f d(n
main contribution comes from that part of the noncom- - A2)2
pact sector of the order parame®rwhere 7,0z, ~ exp( P/ Ar)
1/y — . In this limit, the diffuson degrees of free- X A—dRc~
n

dom can be integrated out, and one ends up with a ver-
sion of some kind of a reduced model adapted for
describing the properties of a single quantum state [%9ﬂ-|ereby,N =1,2, A, = 1 + Re(Le%/P) and

P = A+ 2(776‘7]: - KCK:) (/\lc - /\C)v L= /\%c - 1(1 + 277677:)(1 - ZKCK:) + 4\11 - A% NeKe -

Note that dR. = dn.dn.dk.dk., with 1., 1, ke, K | here only its graphic representation. Figure 1 illustrates
being Grassmann anticommuting variables. how the correlations evolve as a function of a normalized

Skipping technical details of the algebraic manipula-flux through the sample area. As one can see from Fig. 1,
tions, we are able to represent the joint distribution functhe correlations are present all over the crossover regime:

tion fy,N = 1,2, in the form from the smallest to highest values of the normalized flux
* N ¢. These correlations are never strong (of the order of
v = ]1 B(X,x) l_[ M(pn, x)dx, (6) 1%), since the maximal value of the correlator rfféy ~
where =l 0.05 has to be compared to the square of the second
B(X,x) = X [(xX? — DDy(X) + B (X)]e XD, momentP, = [dpp? f1(p), which varies from the value
of 3 to 2 in between the orthogonal and unitary symmetry
M(p.x) = V¥ expl—px)io( p Vo = x). classes. . |
Herel,(z) is the modified Bessel function, and The distant correlations in the wave functions can
0% Xt X ' be also traced in the joint probability to find simul-
d,(X) = ¢ f e dy, ®(X) = % taneously two zeros of the wave functiop(r;,) =
0 X2 0 At small fluxes corresponding < 1,[f1(0)] =
The joint distribution function of this form satisfies the 2~ 5 X2, whereasf,(0,0) = —X‘Z, Since the crossover
normalization condition described in footnote [8]. between the orthogonal and unitary ensembles occurs at

In order to establish the presence or absence of correelatively small magnetic fluxes through the sample area,
lations between fluctuations of the valyes, = le(ri2)l ¢ ~ ¢o(A/E.)"/?, the nonseparability of»(pi, p») as a
at distant points in the sample in the crossover regimewhole is most pronounced whexi ~ 1. In Fig. 2 we
the joint probability distribution functionf, and its show the difference betweeh andf,f; atX = 1.
moments have to be compared to the distribution function
f1. Explicit integration overx in Egs. (6) shows that

in each of two limitsX — 0 and X — «, f>(p1,p2) 0.05
takes a separable form and satisfies Eq. (2). That is,
f2(p1,p2) = Hi—12e P2/ 27 p; in the orthogonal 0.08
case andf»(pi, p2) = exp(—p; — p») in the unitary <
one. However, the distribution function is not separable ~

at any finite magnetic field, which means that even in the ' ©%*

limit of a large distance between the poimrisandr, the
correlations do not vanish. 0.02

To illustrate the existence of long-range correlation
implicit in each individual wave function in a quantum

billiard subjected to a weak magnetic fiele calculate oo
the correlation functiork,;(X) defined as [20]
0 0.00
Ko = [0 dp1dpapip3l f2(p1. p2) — filp)f1(p2)]. 00 0 2)'(00 00 oo

Although an analytical expression fdf,, can be found F|G. 1. The correlation functionk,,(X) as a measure of
from Eqgs. (6) using the identity from footnote [8], we give spatial correlation implicit to a chaotic wave function.
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In conclusion, the joint distribution function of ampli-
tudes of chaotic wave functions is derived for an arbitrary
magnetic flux. Its form manifests the long-range spatial
correlations existing in the entire crossover regime from
orthogonal to unitary symmetry classes. This indicates
that due to the Aharonov-Bohm effect the phases of the
wave functions may be correlated even if the correspond-
ing classical motion is ergodic, which has not been antici-
pated in previous semiclassical theories.

One of us (V.F.) thanks EPSRC for financial support
and MPI-PKS for hospitality.
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