Abstract

It has been suggested that an information geometric view of statistical mechanics in which a metric is introduced onto the space of parameters provides an interesting alternative characterisation of the phase structure, particularly in the case where there are two such parameters -- such as the Ising model with inverse temperature β\beta and external field hh. In various two parameter calculable models the scalar curvature R{\cal R} of the information metric has been found to diverge at the phase transition point βc\beta_c and a plausible scaling relation postulated: Rββcα2{\cal R} \sim |\beta- \beta_c|^{\alpha - 2}. For spin models the necessity of calculating in non-zero field has limited analytic consideration to 1D, mean-field and Bethe lattice Ising models. In this letter we use the solution in field of the Ising model on an ensemble of planar random graphs (where α=1,β=1/2,γ=2\alpha=-1, \beta=1/2, \gamma=2) to evaluate the scaling behaviour of the scalar curvature, and find Rββc2{\cal R} \sim | \beta- \beta_c |^{-2}. The apparent discrepancy is traced back to the effect of a negative α\alpha.Comment: Version accepted for publication in PRE, revtex

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019