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Efficient generation of random multipartite entangled states
using time-optimal unitary operations
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We review the generation of random pure states using a protocol of repeated two-qubit gates. We study the
dependence of the convergence to states with Haar multipartite entanglement distribution. We investigate the
optimal generation of such states in terms of the physical (real) time needed to apply the protocol, instead of
the gate complexity point of view used in other works. This physical time can be obtained, for a given
Hamiltonian, within the theoretical framework offered by the quantum brachistochrone formalism, the quan-
tum analogue to the brachistochrone problem in classical mechanics [Carlini ef al., Phys. Rev. Lett. 96, 060503
(2006)]. Using an anisotropic Heisenberg Hamiltonian as an example, we find that different optimal quantum
gates arise according to the optimality point of view used in each case. We also study how the convergence to

random entangled states depends on different entanglement measures.
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I. INTRODUCTION

One of the most fundamental concepts in the quantum
description of nature is that of entanglement [1,2]. Entangle-
ment constitutes a physical resource that lies at the heart of
important information processes [3-5] such as quantum tele-
portation, superdense coding, and quantum computation. It
has recently been proved that the generic entanglement, de-
fined as the entanglement of random states, can be produced
in a polynomial time using random two-qubit gates [6].

Random states and random unitary operators are the quan-
tum analogs of random numbers and are two basic concepts
in quantum information and quantum communication tasks.
Random unitary operators are involved in the superdense
coding of arbitrary states [7] while the classical capacity of a
noisy quantum channel is saturated by random quantum
states [8], just to mention two very significant applications.
Both of them are well defined by the Haar measure which
remains invariant under unitary transformation. Since the
generation of random states is exponentially hard we study
the production of states with the same distribution of en-
tanglement, a task that can be performed with fewer physical
resources [9].

Although a large amount of different multipartite en-
tanglement measures has recently been proposed, a consid-
erable amount of research has particularly been devoted to
the study of multiqubit entanglement measures defined as the
sum of bipartite entanglement measures over all (or an ap-
propriate family of) the possible bipartitions of the full sys-
tem [10-14]. There exist two popular entanglement measures
for multiqubit pure states, one based on the von Neumann
entropy of marginal density matrices and the other one based
upon the linear entropy of those matrices. It has recently
been shown that the von Neumann entropy based measure is
able to grasp more features of highly entangled states than

*toni.borras@uib.es
'ana.majtey @uib.es
*montse.casas @uib.es

1050-2947/2008/78(2)/022328(5)

022328-1

PACS number(s): 03.67.Bg, 03.67.Ac

the linear entropy based measure [15]. It is then expected
that when the efficient generation of random states is studied
in the light of these entanglement measures, some differ-
ences will arise because, as a consequence of the “concen-
tration of measure” phenomenon, these states are almost
maximally entangled [16].

Emerson er al. [17] introduced a protocol for generating
pseudorandom unitary operators. A circuit of repeated two-
qubit gates was considered acting on a separable state of N
qubits. The unitary operation is given by the combination of
two independent single-qubit rotations, chosen according to
the invariant Haar measure at each time step, and a fixed
two-qubit gate. The convergence to the Haar measure was
shown to be polynomial with the number of qubits. Some
experimental evidences have reinforced these results. A Mar-
kovian description of certain two-qubit gates has also been
used to analytically prove that the convergence is reached in
a polynomial time with the size of the system [9]. Recently,
a numerical effort has allowed to identify the optimal two-
qubit gate improving this analytical bound [18].

In these previous works convergence was studied in terms
of gate complexity, i.e., the number of gates needed to reach
the Haar distribution. In contraposition to the gate complex-
ity, a new complexity concept for quantum algorithms has
been proposed: The time complexity [19,20], understood as
the physical time needed to perform such algorithm. The
minimization of this time is as important, from the experi-
mental point of view, as the gate complexity. A considerable
amount of work has recently been devoted to the time-
optimal quantum computation problem, with emphasis in the
quantum brachistochrone formalism [21-24]. Making use of
the analogy with the brachistochrone problem from classic
mechanics, Carlini er al. [21] introduced a variational ap-
proach to obtain the optimal Hamiltonian and the optimal
quantum evolution between initial and final given states. A
geometric approach to solve this problem, based on the sym-
metry properties of the quantum states space, was addressed
in [22]. The role of the entanglement within the quantum
brachistochrone formalism was studied in [23].

A more general result has recently been formulated in
terms of the variational principle to find the time-optimal
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duration of a unitary transformation [24]. This formulation is
independent of the input state and because of that more gen-
eral than the previously described one. The time-optimal way
to obtain a two-qubit universal quantum gate was previously
discussed using the Cartan decomposition scheme for unitary
transformation and under the constraint that one-qubit gates
can be performed arbitrarily fast [25,26]. To study the bra-
chistochrone problem in relation with unitary operations, the
quantum states space is replaced with the space of unitary
operators. This formalism allows us to consider the con-
straint imposed by the finite amount of energy available in a
physical experiment, as well as any other constraints im-
posed by experimental requirements or theoretical condi-
tions. Then, the problem of finding the optimal parameters
for the Hamiltonian, is reduced to the resolution of a set of
ordinary differential equations [24].

The aim of this contribution is to study the possible dif-
ferences between both formalisms i.e., the gate and time
complexities. We also study the dependence of the conver-
gence rate with different entanglement measures. The paper
is organized as follows. In Sec. II we review the protocol to
generate random pure states and discuss the dependence of
the convergence time, in terms of the number of gates to be
applied, with the entanglement measure. In Sec. III we study
the physical time for the convergence. Finally, Sec. IV is
devoted to summarize and discuss our results.

II. GENERATION OF RANDOM BIPARTITE
ENTANGLEMENT

The efficient quantum circuit generating random quantum
states of N qubits is based on the iterative application of a
two-qubit quantum gate U;; acting on qubits i and j, arbi-
trarily drawn from the N-qubit system, at each time step. The
quantum gate U;; is composed by the product of two single-
qubit rotation gates V; and V; uniformly drawn from the Haar
measure on U(2), and a fixed two qubit gate W;;

Uij = ViVjWi,j’ (1)

where W;; can be decomposed as

W=, ® vz)exp(—z > NO ® Uk>(u1 ®uy, (2)

k=x,y,z

with the fixed rotations v, ; and u; , acting only on one of the
two qubits, and o, are the Pauli matrices [27,28]. In our
random entangling protocol the role of the fixed local rota-
tions u; , and v, , should not be confused with the random
local rotations V; ;, which change at each step of the protocol.
As we are just interested in the entanglement generation
properties of the two-qubit gates we only need to consider
the action of the nonlocal part of the decomposition (2), be-
cause its entangling power is the same when averaged over a
large number of realizations [28,29]. The symmetries of such
nonlocal action enables us to consider just a reduced range
for the values of its parameters (A, € [0, 7/4],k=x,y,z). The
qubits i and j upon which the gate U;; is applied can be
chosen in several different ways, and each of them corre-
sponds to different geometries of the system: Local and non-
local [30]. In the nonlocal case qubits i and j are chosen
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randomly, the gate can act on two arbitrarily separated qu-
bits. In the local case the gate can only act on two neighbor-
ing qubits. In this scheme we study both, periodic and open
boundary conditions.

The results are qualitatively the same in the local and
nonlocal case, so we only show those of the nonlocal cou-
plings as representative of the typical behavior. The main
difference is that a larger amount of two-qubit entangling
gates are needed to converge to the entanglement of random
states for the local geometry.

Our goal is to reproduce the entanglement of typical ran-
dom states, to such an end we averaged a large enough num-
ber of realizations (typically 10%) in order to have small sta-
tistical fluctuations.

The genuine multipartite entanglement E of a N-qubit
state can be expressed as

1 (N12)
E=——2> E™, 3
(N/Z) m=1 ( )
| Mbipan
E™W=—— > E(). (4)
Nbiparl i=1

Here, E(i) stands for the entanglement associated with one,
single bipartition of the N-qubits system. The quantity E")
gives the average entanglement between subsets of m qubits
and the remaining N—m qubits constituting the system. The
average is performed over the b’i’gart nonequivalent ways to
do such bipartitions, which are given by

N
oart = (m> if m# N2, (5)
1[N .
Nitori = E(N/z ) if m=N/2. (6)

Different E/ represent different entanglement properties of
the state, this is why all these entanglement measures must
be computed to capture all the entanglement properties of the
state. The global multiqubit entanglement is given by the
average of the (N/2) different E/ for any state |¥).

We use two types of entanglement measures, E; and E,
respectively, based on two different measures for the mixed-
ness of the marginal density matrices p; associated with the
bipartitions:

(i) the linear entropy S;= 2511 [1-Tr(p})],

(ii) the von Neumann entropy SUN:—iTr(p,» log, p;).

If one uses the linear entropy S;, E Ll turns out to be the
well-known Meyer-Wallach multipartite entanglement mea-
sure [31] that Brennen showed to coincide with the average
of all the single-qubit linear entropies [32]. This measure was
later generalized by Scott to the case in which all possible
bipartitions of the system were considered [33].

We study the convergence according to different measures
of multiqubit entanglement based upon bipartitions. We char-
acterized the global entanglement with the average of the
bipartite entanglement measures associated with the 2V—1
bipartitions of the N-qubit system.
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We compare the evolution towards the convergence of the
global entanglement with the evolution of the entanglement
of the most balanced bipartition E? and the entanglement
of the most unbalanced one E'"). We introduce the auxiliary
normalized quantity

Eypar —(E
AE = Haar < > ) (7)
EHaar

which decays exponentially with the number of iterations.
AE will make easy the comparison between different bipar-
titions. The saturation value Eyy,,,, is the mean value of the
entanglement of the Haar distribution given in [16,34] and
(E) is the averaged entanglement over system realizations.
We choose the initial state to be the separable state |00- - -0)
without losing generality. The optimal time is defined as the
number of gates required to reach AE=0.01. We fixed the

two-qubit gate X =(7/4,0,0) which is known to be an opti-
mal gate in the nonlocal couplings case [18]. The results are
qualitatively the same for any other choice of the gate.

Figure 1 shows that the convergence rates do not depend
on the dimension of the chosen bipartition if the entangle-
ment is quantified with the linear entropy. However, there
exist small differences between the convergence rates if we
use the von Neumann entropy as the measure of entangle-
ment. We have a little faster convergence for the most unbal-
anced bipartition. This behavior is more visible for higher
dimensional states, the larger the number of qubits, the larger
the difference between the convergence rates. These results
imply that when working with the linear entropy, it is enough
to consider the convergence of the Meyer-Wallach entangle-
ment measure. If the von Neumann entanglement measure is
used, one should consider the convergence of the entangle-
ment of the most balanced bipartitions EW2) | because it is
the one with a longer convergence time.

III. GATE COMPLEXITY VS TIME COMPLEXITY

In this section we are interested in the relation between
the number of gates in the circuit in order to reach the Haar
distribution and the physical time to perform this operation.
As an example we choose the Heisenberg Hamiltonian

H=—2chr}0'jz-+23“0"zl, (8)
J a

where J; are anisotropic couplings (j=x,y,z), B“(t)
(a=1,2) 1s an external magnetic field in the z direction, and
04=a'j®l, 0'12 =1® o, with o), as before, the Pauli matrices.
The local magnetic terms appearing in (8) are needed to per-
form the two-qubit gate operation and are not related to the
random single-qubit rotations V; ; introduced in Sec. II.

The optimal unitary evolution operator for the Heisenberg
Hamiltonian (8) was obtained in [24]. Using the results of
the quantum brachistochrone formalism the optimal time for
some particular gates was calculated.

We focus our efforts in the optimal entangler gate U,
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FIG. 1. Typical numerical simulation using the random circuit in
a system of six-qubit. The entanglement average of the Haar mea-
sure, represented by dashed lines is reached in Ny, steps. Top
linear entropy as a measure of entanglement, bottom von Neumann
entropy. We plot the global entanglement (squares) and the en-
tanglement for the most balanced (triangles) and most unbalanced
(circles) bipartitions of the system. Inset: Decay rates for the differ-
ent entanglement measures, the rate is the same for the linear en-
tropy and little differences are observed for the von Neumann en-
tropy for different bipartitions of the system.

cosd 0 0 sing
0 10 O
Y=l o 01 o | ©)
—sing 0 0 cos ¢

with the angle ¢ € [0, 77]. This gate applied to an initial sepa-
rable state produces a ¢-dependent entangled state. When
this gate is applied to the separable state |00) it produces a
maximally entangled state. The optimal time duration to
implement the entangler gate assuming the finite energy con-
dition is given by wt,=m\x(1-x/2), where x=¢/ 7 and w is
a constant given by the constraint. Since the only effect of
the external parameter w is to rescale the time, in the follow-
ing we take w=1 as this choice will not modify our results.
We study the convergence rate to the Haar distribution of this
gate in terms of the physical time. This physical time is
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FIG. 2. Number of gates (dashed line) and physical time (solid
line) to reach the convergence to the mean value of the Haar en-
tanglement as a function of the gate parameter ¢ for a system of
four qubits. Inset: Optimal time to implement the entangler U4 gate
as a function of ¢. As we have chosen units in which Planck’s
constant 7 is equal to 1, all depicted quantities are dimensionless.

obtained as the product of the total number of gates Ny
times the optimal time 7 (£,ys=Ngaest¢)- As in this case the
final result is not affected by the choice of the measure of
entanglement, we determine the convergence using E; as a
measure for the mixedness of the marginal density matrices.
As before we consider that the convergence is reached for
AE=0.01.

Figure 2 shows that a gate as simple as Uy, which de-
pends just on the parameter ¢, is enough to reveal the dif-
ferences between the gate-complexity and time-complexity
concepts. The curve Ny, can be viewed as the time that
would be necessary to reach the convergence if all the gates
took the same time 74=1 to perform each evolution. In such
case, all gates with values of ¢ in the interval (7/4,3m/4)
would contribute to a reasonably efficient algorithm. The op-
timal gate would be attained by ¢=m/2. But, as can be seen
in the inset of Fig. 2, the optimal time 7, needed to perform
each iteration is far from being the same for all the values of
¢. It increases with the value of ¢, and it is negligible for
values of ¢ near zero, because the entangling gate becomes
the identity at ¢=0. If we combine both magnitudes, we
obtain the total physical time 7., which inherits the main
properties of Ny, and 74 The global behavior resembles
that of Ny both of them diverge for the extremal values
¢=0 and ¢=7 while attaining their lower and optimum val-
ues for central values of ¢. The asymmetry of 7, ; compared
t0 Ngyes comes from the behavior of 74 While Ny is sym-
metric with respect to its optimum and central value ¢
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=m/2, the optimum gate according to 7,y
lower value of such parameter (¢p= 7/3).

The case studied in this section is a good example of the
role that the time complexity can play when designing an
efficient quantum algorithm. According to the gate complex-
ity there exist a large range of values of ¢ for which the
random states generating algorithm is quite efficient. If one
introduces the time complexity argument this degeneracy is
broken. The difference between the time needed by these
efficient gates is not huge but it is enough to be taken into
account, especially in a situation where the algorithm must
be run for a large number of times.

corresponds to a

IV. SUMMARY AND DISCUSSION

We have studied the generation of multipartite entangled
states considering a protocol of a two-qubit fixed gate com-
bined with two one-qubit random rotations. A comparison
was made between the gate complexity and the time com-
plexity revealing that they are two different optimality prob-
lems. In a real case both complexities should be taken into
account, and the optimal gate would be one with a reason-
able good behavior according to both points of view. Never-
theless, when the algorithm must be run a large number of
times, the optimization of time complexity is mandatory. In
the example studied in Sec. III, the time complexity optimi-
zation allowed us to find an optimal gate between the whole
family of gates which are almost equally efficient according
to the gate complexity.

The quantum brachistochrone formalism seems to be a
promising approach for the treatment of the time complexity
problem. Following the work of Carlini et al. [24] it is pos-
sible to obtain the optimal way to realize a given quantum
gate, introducing in this derivation any constraint given by
the experimental setup.

We also focused on the possible dependence of the result-
ing entanglement on the different allowed bipartitions of the
system. We found that when the linear entropy is considered,
the convergence rates are independent of the bipartition
scheme. However, the convergence rates are different if we
use the von Neumann entropy. In this case the most balanced
bipartition should be considered to guarantee the conver-
gence. These results are independent of the possible, local or
nonlocal, geometries of the system.
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