604 research outputs found

    Discrepancies in Determinations of the Ginzburg-Landau Parameter

    Full text link
    Long-standing discrepancies within determinations of the Ginzburg-Landau parameter κ\kappa from supercritical field measurements on superconducting microspheres are reexamined. The discrepancy in tin is shown to result from differing methods of analyses, whereas the discrepancy in indium is a consequence of significantly differing experimental results. The reanalyses however confirms the lower κ\kappa determinations to within experimental uncertainties.Comment: submitted to Phys. Rev.

    Charge-Dependence of the Nucleon-Nucleon Interaction

    Full text link
    Based upon the Bonn meson-exchange-model for the nucleon-nucleon (NNNN) interaction, we calculate the charge-independence breaking (CIB) of the NNNN interaction due to pion-mass splitting. Besides the one-pion-exchange (OPE), we take into account the 2π2\pi-exchange model and contributions from three and four irreducible pion exchanges. We calculate the CIB differences in the 1S0^1S_0 effective range parameters as well as phase shift differences for partial waves up to total angular momentum J=4 and laboratory energies below 300 MeV. We find that the CIB effect from OPE dominates in all partial waves. However, the CIB effects from the 2π2\pi model are noticable up to D-waves and amount to about 40% of the OPE CIB-contribution in some partial waves, at 300 MeV. The effects from 3π\pi and 4π\pi contributions are negligible except in 1S0^1S_0 and 3P2^3P_2.Comment: 12 pages, RevTex, 14 figure

    Reconstruction of Northern Hemisphere 1950–2010 atmospheric non-methane hydrocarbons

    Get PDF
    The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the atmosphere by anthropogenic processes. Recent studies have pointed out a tight linkage between the atmospheric mole fractions of the NMHC ethane and the atmospheric growth rate of methane. Consequently, atmospheric NMHC are valuable indicators for tracking changes in anthropogenic emissions, photochemical ozone production, and greenhouse gases. This study investigates the 1950–2010 Northern Hemisphere atmospheric C<sub>2</sub>–C<sub>5</sub> NMHC ethane, propane, <i>i</i>-butane, <i>n</i>-butane, <i>i</i>-pentane, and <i>n</i>-pentane by (a) reconstructing atmospheric mole fractions of these trace gases using firn air extracted from three boreholes in 2008 and 2009 at the North Greenland Eemian Ice Drilling (NEEM) site and applying state-of-the-art models of trace gas transport in firn, and by (b) considering eight years of ambient NMHC monitoring data from five Arctic sites within the NOAA Global Monitoring Division (GMD) Cooperative Air Sampling Network. Results indicate that these NMHC increased by ~40–120% after 1950, peaked around 1980 (with the exception of ethane, which peaked approximately 10 yr earlier), and have since dramatically decreased to be now back close to 1950 levels. The earlier peak time of ethane vs. the C<sub>3</sub>–C<sub>5</sub> NMHC suggests that different processes and emissions mitigation measures contributed to the decline in these NMHC. The 60 yr record also illustrates notable increases in the ratios of the isomeric <i>iso-/n</i>-butane and <i>iso-/n</i>-pentane ratios. Comparison of the reconstructed NMHC histories with 1950–2000 volatile organic compounds (VOC) emissions data and with other recently published ethane trend analyses from ambient air Pacific transect data showed (a) better agreement with North America and Western Europe emissions than with total Northern Hemisphere emissions data, and (b) better agreement with other Greenland firn air data NMHC history reconstructions than with the Pacific region trends. These analyses emphasize that for NMHC, having atmospheric lifetimes on the order of < 2 months, the Greenland firn air records are primarily a representation of Western Europe and North America emission histories

    Gigwa v2—Extended and improved genotype investigator

    Get PDF
    The study of genetic variations is the basis of many research domains in biology. From genome structure to population dynamics, many applications involve the use of genetic variants. The advent of next-generation sequencing technologies led to such a flood of data that the daily work of scientists is often more focused on data management than data analysis. This mass of genotyping data poses several computational challenges in terms of storage, search, sharing, analysis, and visualization. While existing tools try to solve these challenges, few of them offer a comprehensive and scalable solution. Gigwa v2 is an easy-to-use, species-agnostic web application for managing and exploring high-density genotyping data. It can handle multiple databases and may be installed on a local computer or deployed as an online data portal. It supports various standard import and export formats, provides advanced filtering options, and offers means to visualize density charts or push selected data into various stand-alone or online tools. It implements 2 standard RESTful application programming interfaces, GA4GH, which is health-oriented, and BrAPI, which is breeding-oriented, thus offering wide possibilities of interaction with third-party applications. The project home page provides a list of live instances allowing users to test the system on public data (or reasonably sized user-provided data). This new version of Gigwa provides a more intuitive and more powerful way to explore large amounts of genotyping data by offering a scalable solution to search for genotype patterns, functional annotations, or more complex filtering. Furthermore, its user-friendliness and interoperability make it widely accessible to the life science community

    The properties of the three-nucleon system with the dressed-bag model for nn interaction. I: New scalar three-body force

    Full text link
    A multi-component formalism is developed to describe three-body systems with nonstatic pairwise interactions and non-nucleonic degrees of freedom. The dressed-bag model for NNNN interaction based on the formation of an intermediate six-quark bag dressed by a σ\sigma-field is applied to the 3N3N system, where it results in a new three-body force between the six-quark bag and a third nucleon. Concise variational calculations of 3N3N bound states are carried out in the dressed-bag model including the new three-body force. It is shown that this three-body force gives at least half the 3N3N total binding energy, while the weight of non-nucleonic components in the 3^3H and 3^3He wavefunctions can exceed 10%. The new force model provides a very good description of 3N3N bound states with a reasonable magnitude of the σNN\sigma NN coupling constant. The model can serve as a natural bridge between dynamical description of few-nucleon systems and the very successful Walecka approach to heavy nuclei and nuclear matter.Comment: 26 pages, Latex, 7 figure

    Patient Preferences in the Medical Product Life Cycle: What do Stakeholders Think? Semi-Structured Qualitative Interviews in Europe and the USA.

    Get PDF
    Background Patient preferences (PP), which are investigated in PP studies using qualitative or quantitative methods, are a growing area of interest to the following stakeholders involved in the medical product lifecycle: academics, health technology assessment bodies,

    MGIS: managing banana (Musa spp.) genetic resources information and high-throughput genotyping data

    Get PDF
    Unraveling the genetic diversity held in genebanks on a large scale is underway, due to advances in Next-generation sequence (NGS) based technologies that produce high-density genetic markers for a large number of samples at low cost. Genebank users should be in a position to identify and select germplasm from the global genepool based on a combination of passport, genotypic and phenotypic data. To facilitate this, a new generation of information systems is being designed to efficiently handle data and link it with other external resources such as genome or breeding databases. The Musa Germplasm Information System (MGIS), the database for global ex situ-held banana genetic resources, has been developed to address those needs in a user-friendly way. In developing MGIS, we selected a generic database schema (Chado), the robust content management system Drupal for the user interface, and Tripal, a set of Drupal modules which links the Chado schema to Drupal. MGIS allows germplasm collection examination, accession browsing, advanced search functions, and germplasm orders. Additionally, we developed unique graphical interfaces to compare accessions and to explore them based on their taxonomic information. Accession-based data has been enriched with publications, genotyping studies and associated genotyping datasets reporting on germplasm use. Finally, an interoperability layer has been implemented to facilitate the link with complementary databases like the Banana Genome Hub and the MusaBase breeding database. Database URL:https://www.crop-diversity.org/mgis
    corecore