38 research outputs found

    The Extended Main-Sequence Turn-off Clusters of the Large Magellanic Cloud - Missing links in Globular Cluster Evolution

    Get PDF
    Recent observations of intermediate age (1 - 3 Gyr) massive star clusters in the Large Magellanic Cloud (LMC) have revealed that the majority possess bifurcated or extended main-sequence turn-off (EMSTO) morphologies. This effect can be understood to arise from subsequent star formation amongst the stellar population with age differences between constituent stars amounting to 50 - 300 Myr. Age spreads of this order are similarly invoked to explain the light element abundance variations witnessed in ancient globular clusters. In this paper we explore the proposition that the clusters exhibiting the EMSTO phenomenon are a general phase in the evolution of massive clusters, one that naturally leads to the particular chemical properties of the ancient globular cluster population. We show that the isolation of EMSTO clusters to intermediate ages is the consequence of observational selection effects. In our proposed scenario, the EMSTO phenomenon is identical to that which establishes the light element abundance variations that are ubiquitous in the ancient globular cluster population. Our scenario makes a strong prediction: EMSTO clusters will exhibit abundance variations in the light elements characteristic of the ancient GC population.Comment: ApJ accepted. 33 pages, 5 figure

    Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio

    Plasma Dynamics

    Get PDF
    Contains research objectives and summary of research on twenty-one projects split into three sections, with four sub-sections in the second section and reports on twelve research projects.National Science Foundation (Grant ENG75-06242)U.S. Energy Research and Development Administration (Contract E(11-1)-2766)U.S. Energy Research and Development Agency (Contract E(11-1)-3070)U.S. Energy Research and Development Administration (Contract E(11-1)-3070)Research Laboratory of Electronics, M.I.T. Industrial Fellowshi

    A sub-Mercury-sized exoplanet

    Full text link
    Since the discovery of the first exoplanet we have known that other planetary systems can look quite unlike our own. However, until recently we have only been able to probe the upper range of the planet size distribution. The high precision of the Kepler space telescope has allowed us to detect planets that are the size of Earth and somewhat smaller, but no previous planets have been found that are smaller than those we see in our own Solar System. Here we report the discovery of a planet significantly smaller than Mercury. This tiny planet is the innermost of three planets that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of Earth's Moon, and highly irradiated surface, Kepler-37b is probably a rocky planet with no atmosphere or water, similar to Mercury.Comment: Accepted and published in Nature (2013 Feb 28). This is the submitted version of paper, merged with the Supplementary Informatio

    The Occurrence of Rocky Habitable Zone Planets Around Solar-Like Stars from Kepler Data

    Get PDF
    We present occurrence rates for rocky planets in the habitable zones (HZ) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η⊕\eta_\oplus as the HZ occurrence of planets with radius between 0.5 and 1.5 R⊕R_\oplus orbiting stars with effective temperatures between 4800 K and 6300 K. We find that η⊕\eta_\oplus for the conservative HZ is between 0.37−0.21+0.480.37^{+0.48}_{-0.21} (errors reflect 68\% credible intervals) and 0.60−0.36+0.900.60^{+0.90}_{-0.36} planets per star, while the optimistic HZ occurrence is between 0.58−0.33+0.730.58^{+0.73}_{-0.33} and 0.88−0.51+1.280.88^{+1.28}_{-0.51} planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates using both a Poisson likelihood Bayesian analysis and Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95%95\% confidence that, on average, the nearest HZ planet around G and K dwarfs is about 6 pc away, and there are about 4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun.Comment: To appear in The Astronomical Journa

    The Occurrence of Rocky Habitable-zone Planets around Solar-like Stars from Kepler Data

    Get PDF
    We present the occurrence rates for rocky planets in the habitable zones (HZs) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η⊕ as the HZ occurrence of planets with radii between 0.5 and 1.5 R⊕ orbiting stars with effective temperatures between 4800 and 6300 K. We find that η⊕ for the conservative HZ is between 0.37^(+0.48)_(−0.21) (errors reflect 68% credible intervals) and 0.60^(+0.90)_(−0.36) planets per star, while the optimistic HZ occurrence is between 0.58^(+0.73)_(−0.33) and 0.88^(+1.28)_(−0.51) planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates between using Poisson likelihood Bayesian analysis and using Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95% confidence that, on average, the nearest HZ planet around G and K dwarfs is ~6 pc away and there are ~4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun

    Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O)

    Thomas Nuttall\u27s controversy with Asa Gray

    No full text
    Volume: 54Start Page: 293End Page: 30
    corecore