153 research outputs found

    Safer_RAIN: A DEM-based hierarchical filling-&-spilling algorithm for pluvial flood hazard assessment and mapping across large urban areas

    Get PDF
    The increase in frequency and intensity of extreme precipitation events caused by the changing climate (e.g., cloudbursts, rainstorms, heavy rainfall, hail, heavy snow), combined with the high population density and concentration of assets, makes urban areas particularly vulnerable to pluvial flooding. Hence, assessing their vulnerability under current and future climate scenarios is of paramount importance. Detailed hydrologic-hydraulic numerical modeling is resource intensive and therefore scarcely suitable for performing consistent hazard assessments across large urban settlements. Given the steadily increasing availability of LiDAR (Light Detection And Ranging) high-resolution DEMs (Digital Elevation Models), several studies highlighted the potential of fast-processing DEM-based methods, such as the Hierarchical Filling-&-Spilling or Puddle-to-Puddle Dynamic Filling-&-Spilling Algorithms (abbreviated herein as HFSAs). We develop a fast-processing HFSA, named Safer_RAIN, that enables mapping of pluvial flooding in large urban areas by accounting for spatially distributed rainfall input and infiltration processes through a pixel-based Green-Ampt model. We present the first applications of the algorithm to two case studies in Northern Italy. Safer_RAIN output is compared against ground evidence and detailed output from a two-dimensional (2D) hydrologic and hydraulic numerical model (overall index of agreement between Safer_RAIN and 2D benchmark model: sensitivity and specificity up to 71% and 99%, respectively), highlighting potential and limitations of the proposed algorithm for identifying pluvial flood-hazard hotspots across large urban environments

    Telehealth and Mobile Health Applied To IntegratedBehavioral Care: OpportunitiesFor Progress In New Hampshire

    Get PDF
    This paper is an accompanying document to a webinar delivered on May 16, 2017, for the New Hampshire Citizens Health Initiative (Initiative). As integrated behavioral health efforts in New Hampshire gain traction, clinicians, administrators, payers, and policy makers are looking for additional efficiencies in delivering high quality healthcare. Telehealth and mobile health (mHealth) have the opportunity to help achieve this while delivering a robust, empowered patient experience. The promise of video-based technology was first made in 1964 as Bell Telephone shared its Picturephone® with the world. This was the first device with audio and video delivered in an integrated technology platform. Fast-forward to today with Skype, FaceTime, and webinar tools being ubiquitous in our personal and business lives, but often slow to be adopted in the delivery of medicine. Combining technology-savvy consumers with New Hampshire’s high rate of electronic health record (EHR) technology adoption, a fairly robust telecommunications infrastructure, and a predominately rural setting, there is strong foundation for telehealth and mHealth expansion in New Hampshire’s integrated health continuum

    Nationaler Energie- und Klimaplan (NEKP) für Österreich - Wissenschaftliche Bewertung der in der Konsultation 2023 vorgeschlagenen Maßnahmen [National Energy and Climate Plan (NEKP) for Austria - Scientific assessment of the measures proposed in the 2023 consultation]

    Get PDF
    Um den globalen Klimawandel zu bremsen, seine Auswirkungen abzumildern und eine nach-haltige Zukunft für junge und zukünftige Generationen zu gestalten, sind internationale Koor-dination sowie umfassende nationale Umsetzungspläne für Klimamaßnahmen unerlässlich. Vor diesem Hintergrund hat das Bundesministerium für Klimaschutz, Umwelt, Energie, Mobi-lität, Innovation und Technologie (BMK) nach Einbindung der relevanten anderen österreichi-schen Bundesministerien Ende Juni 2023 den Entwurf eines integrierten nationalen Energie- und Klimaplans (NEKP) für Österreich (Periode 2021-2030) vorgelegt. Dieser Entwurf stand im Sommer 2023 zur Kommentierung offen, um eine breite Beteiligung von öffentlichen und privaten Institutionen und Personen sicherzustellen. In order to slow down global climate change, mitigate its effects and shape a sustainable future for young and future generations, international coordination and comprehensive national implementation plans for climate measures are essential. Against this background, the Federal Ministry for Climate Protection, Environment, Energy, Mobility, Innovation and Technology (BMK), after involving the relevant other Austrian federal ministries, presented the draft of an integrated national energy and climate plan (NEKP) for Austria at the end of June 2023 ( Period 2021-2030). This draft was open for comment in summer 2023 to ensure broad participation from public and private institutions and individuals

    The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats

    Get PDF
    To study the role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 6), a group in which LPS administration was followed by immediate fluid resuscitation which prevented the drop of renal blood flow (EARLY group) (n = 6), and a group in which LPS administration was followed by delayed (i.e., a 2-h delay) fluid resuscitation (LATE group) (n = 6). Renal blood flow was measured using a transit-time ultrasound flow probe. Microvascular perfusion and oxygenation distributions in the renal cortex were assessed using laser speckle imaging and phosphorimetry, respectively. Interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α were measured as markers of systemic inflammation. Furthermore, renal tissue samples were stained for leukocyte infiltration and inducible nitric oxide synthase (iNOS) expression in the kidney. LPS infusion worsened both microvascular perfusion and oxygenation distributions. Fluid resuscitation improved perfusion histograms but not oxygenation histograms. Improvement of microvascular perfusion was more pronounced in the EARLY group compared with the LATE group. Serum cytokine levels decreased in the resuscitated groups, with no difference between the EARLY and LATE groups. However, iNOS expression and leukocyte infiltration in glomeruli were lower in the EARLY group compared with the LATE group. In our model, prevention of endotoxemia-induced systemic hypotension by immediate fluid resuscitation (EARLY group) did not prevent systemic inflammatory activation (IL-6, IL-10, TNF-α) but did reduce renal inflammation (iNOS expression and glomerular leukocyte infiltration). However, it could not prevent reduced renal microvascular oxygenatio

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    corecore