1,059 research outputs found

    Deglaciation of Penobscot Bay, Maine, USA

    Get PDF
    The Pond Ridge and Pineo Ridge moraines in downeast Maine likely formed at ~16.1 and ~15.7 ka respectively, during cold episodes recorded by δ18O dips in the GRIP ice core. The elapsed time between these ages is broadly consistent with retreat rates recorded by intervening De Geer moraines, which are readily visible on LiDAR imagery and are believed to be approximately annual. North-northwestward from the southwesterly extension of the Pond Ridge moraine there are three pairs of prominent moraines that are relatively continuous across the study area and could be reliably extrapolated across intervening water bodies. Retreat rates recorded by De Geer moraines suggest that these pairs formed at 15.7-15.8 ka, 15.5-15.6 ka, and ~15.5 ka. Although retreat appears to have occurred slightly faster across Penobscot Bay, a significant calving bay does not seem to have developed there. Instead, the ice margin remained relatively straight, retreating to the north-northwest. De Geer moraines become more widely spaced northward and vanish after ~15.5 ka when the ice margin was north of the head of Penobscot Bay and of Pineo Ridge. This likely reflects higher retreat rates during the initial phases of the Bølling warm period. Just south of Pineo Ridge there were two ice lobes; one retreated to the north and one to the northwest. The latter retreated more rapidly, while the former experienced numerous minor readvances and stillstands until finally pausing at the location of Pineo Ridge. A stillstand of this lobe then resulted in deposition of the Pineo Ridge moraine complex

    Competition of crystal field splitting and Hund's rule coupling in two-orbital magnetic metal-insulator transitions

    Full text link
    Competition of crystal field splitting and Hund's rule coupling in magnetic metal-insulator transitions of half-filled two-orbital Hubbard model is investigated by multi-orbital slave-boson mean field theory. We show that with the increase of Coulomb correlation, the system firstly transits from a paramagnetic (PM) metal to a {\it N\'{e}el} antiferromagnetic (AFM) Mott insulator, or a nonmagnetic orbital insulator, depending on the competition of crystal field splitting and the Hund's rule coupling. The different AFM Mott insulator, PM metal and orbital insulating phase are none, partially and fully orbital polarized, respectively. For a small JHJ_{H} and a finite crystal field, the orbital insulator is robust. Although the system is nonmagnetic, the phase boundary of the orbital insulator transition obviously shifts to the small UU regime after the magnetic correlations is taken into account. These results demonstrate that large crystal field splitting favors the formation of the orbital insulating phase, while large Hund's rule coupling tends to destroy it, driving the low-spin to high-spin transition.Comment: 4 pages, 4 figure

    Differential Gene Expression in Primary Breast Tumors Associated with Lymph Node Metastasis

    Get PDF
    Lymph node status remains one of the most useful prognostic indicators in breast cancer; however, current methods to assess nodal status disrupt the lymphatic system and may lead to secondary complications. Identification of molecular signatures discriminating lymph node-positive from lymph node-negative primary tumors would allow for stratification of patients requiring surgical assesment of lymph nodes. Primary breast tumors from women with negative (n = 41) and positive (n = 35) lymph node status matched for possible confounding factors were subjected to laser microdissection and gene expression data generated. Although ANOVA analysis (P < .001, fold-change >1.5) revealed 13 differentially expressed genes, hierarchical clustering classified 90% of node-negative but only 66% of node-positive tumors correctly. The inability to derive molecular profiles of metastasis in primary tumors may reflect tumor heterogeneity, paucity of cells within the primary tumor with metastatic potential, influence of the microenvironment, or inherited host susceptibility to metastasis

    State Transition Algorithm

    Full text link
    In terms of the concepts of state and state transition, a new heuristic random search algorithm named state transition algorithm is proposed. For continuous function optimization problems, four special transformation operators called rotation, translation, expansion and axesion are designed. Adjusting measures of the transformations are mainly studied to keep the balance of exploration and exploitation. Convergence analysis is also discussed about the algorithm based on random search theory. In the meanwhile, to strengthen the search ability in high dimensional space, communication strategy is introduced into the basic algorithm and intermittent exchange is presented to prevent premature convergence. Finally, experiments are carried out for the algorithms. With 10 common benchmark unconstrained continuous functions used to test the performance, the results show that state transition algorithms are promising algorithms due to their good global search capability and convergence property when compared with some popular algorithms.Comment: 18 pages, 28 figure

    Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater inputs: implications for the relationship between subglacial drainage system behavior and ice velocity.

    Get PDF
    High resolution measurements of ice motion along a -120 km transect in a land-terminating section of the GrIS reveal short-term velocity variations (<1 day), which are forced by rapid variations in meltwater input to the subglacial drainage system from the ice sheet surface. The seasonal changes in ice velocity at low elevations (<1000 m) are dominated by events lasting from 1 day to 1 week, although daily cycles are largely absent at higher elevations, reflecting different patterns of meltwater input. Using a simple model of subglacial conduit behavior we show that the seasonal record of ice velocity can be understood in terms of a time-varying water input to a channelized subglacial drainage system. Our investigation substantiates arguments that variability in the duration and rate, rather than absolute volume, of meltwater delivery to the subglacial drainage system are important controls on seasonal patterns of subglacial water pressure, and therefore ice velocity. We suggest that interpretations of hydro-dynamic behavior in land-terminating sections of the GrIS margin which rely on steady state drainage theories are unsuitable for making predictions about the effect of increased summer ablation on future rates of ice motion. © 2012. American Geophysical Union

    A Computer Vision-Based Approach for Non-contact Modal Analysis and Finite Element Model Updating

    Get PDF
    Computer vision-based techniques for modal analysis and system identification are rapidly becoming of great interest for both academic research and engineering practice in structural engineering. For instance, this is particularly relevant in fields such as bridge or tall building monitoring, where the large size of the structure would require an expensive sensor network, and for the characterisation of very slender, highly-flexible structural components, where physically-attached sensors cannot be deployed without altering the mass and stiffness of the system under investigation. This study concerns the latter case. Here, an algorithm for the full-field, non-contact extraction and processing of useful information from vibrational data is applied. Firstly, video acquisition is used to capture rapidly very spatially- and temporally-dense information regarding the vibrational behaviour of a high-aspect-ratio (HAR) prototype wing, with high image quality and high frame rate. Video processing is then applied to extract displacement time histories from the collected data; in turn, these are used to perform Modal Analysis (MA) and Finite Element Model Updating (FEMU). Results are benchmarked against the ones obtained from a single-point laser Doppler vibrometer (LDV). The study is performed on the beam-like spar of the wing prototype with and without the sensors attached to appreciate the disruptive effects of sensor loading. Promising results were achieved

    Simplified tabu search with random-based searches for bound constrained global optimization

    Get PDF
    This paper proposes a simplified version of the tabu search algorithm that solely uses randomly generated direction vectors in the exploration and intensification search procedures, in order to define a set of trial points while searching in the neighborhood of a given point. In the diversification procedure, points that are inside any already visited region with a relative small visited frequency may be accepted, apart from those that are outside the visited regions. The produced numerical results show the robustness of the proposed method. Its efficiency when compared to other known metaheuristics available in the literature is encouraging.FCT - Fundação para a Ciência e a Tecnologia(UIDB/00013/2020); FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM

    Mechanisms of Degradation and Identification of Connectivity and Erosion Hotspots

    Get PDF
    The context of processes and characteristics of soil erosion and land degradation in Mediterranean lands is outlined. The concept of connectivity is explained. The remainder of the chapter demonstrates development of methods of mapping, analysis and modelling of connectivity to produce a spatial framework for development of strategies of use of vegetation to reduce soil erosion and land degradation. The approach is applied in a range of typical land use types and at a hierarchy of scale from land unit to catchment. Patterns of connectivity and factors influencing the location and intensity of processes are identified, including the influence of topography, structures such as agricultural terraces and check dams, and past land uses. Functioning of connectivity pathways in various rainstorms is assessed. Modes of terrace construction and extent of maintenance, as well as presence of tracks and steep gradients are found to be of importance. A method of connectivity modelling that incorporates effects of structure and vegetation was developed and has been widely applied subsequently

    Ultra Thin Deployable Reflector Antennas

    Full text link
    corecore