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Summary

Recent experimental results with lower hybrid
heating on the Adiabatic Toroidal Compression (ATC)
machine at PPPL have indicated a need to look into
larger RF heating systems. This paper is intended
to project to the reader the state of the art of
existing equipment which could be used for lower
hybrid heating of a plasma as well as some of the
physics restraints which establish the requirements
for this equipment. At the present time the fre-
quency range around 1-5 GHZ looks attractive because
of two aspects: First, physics requirements select
this frequency range as being optimal to produce
the best heating results for existing and proposed
experimental machines. Second, the engineering
prospects appear favorable in that the equipment
required does not need extensive development in this
frequency range, and the coupling systems require
waveguides rather than an antenna system internal
to the vacuum vessel.

• The frequency range, power, efficiency, and
pulse length of a high power rf system are discussed
as they might be applied to the TFTR Tokamak facility
as well as on a full scale reactor. Comparisons
are made of the size, power output, and costs to
obtain microwave pCwer sufficient to satisfy the
physics requirements.

A new microwave feed concept is discussed
which will improve the coupling of the microwave
energy into the plasma. The unique advantages of
waveguide feed systems is apparent when one considers
the practical problens associated with coupling
sii'ii"1 enentary heating energy into a reactor.

Requirement for Auxiliary Heating

Auxiliary heating in tokamaks is being explored
from three aspects; Neutral Injection, Ion Cyclotron
Resonance Heating (ICRH), and Lower Hybrid Heating
(LHH). This paper concentrates on Lower Hybrid heat-
ing as it presents some attractive features for
present as well as future tokamak devices.

Some type of auxiliary heating must be used to
supplement Ohmic Heating in Tokamaks. Ohmic Heating
will not be adequate to raise the plasma temperature
to reaction levels for two basic reasons. First,
the plasma resistivity is inversely proportional to
g^ temperature... .so., as we heat „the ,p lasma ; the res is- ,
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Recent experimental results with lower hybrid
heating on the Adiabatic Toroidal Compression (ATC)
machine at PPPL bave indicated a need to look into
larger RF heating systems. This paper is intended
to project to the redder the state of the art of
existing equipment which could be used for lower
hybrid heating of a plasma as well as some of the
physics restraints which establish the requirements
for tl. > equipment. At the present time the fre-
quency range around 1-5 GHZ looks attractive because
of two aspects: First, physics requirements select
this frequency range as being optimal to produce
the best heating results for existing and proposed
experimental machines. Second, the engineering
prospects appear favorable in that the equipment
required does not need extensive development in this
frequency range, and the coupling systems require
waveguides rather than an antenna system internal
to the vacuum vessel.

The frequency range, power, efficiency, and
pulse length of a high power rf system are discussed
as they might be applied to the TII'X Tokamak facility
as well as on a full scale reactor. Comparisons
are made of the size, power output, and costs to
obtain microwave power sufficient to satisfy the
physics requirements.

A new microwave feed concept is discussed
which will improve the coupling of the microwave
energy into the plasma. The unique advantages of
waveguide feoc systems is apparent when one considers
the practical problems associated with coupling
si"i?"iver<.tjry Voating energy into .1 reactor.

Reçulremane for Auxiliary Heating

Auxiliary heating in tokamaks is being explored
from three aspects; Neutral Injection, Ion Cyclotron
Resonance Heating (IC.HH), and Lower Hybrid Heating
(LKH). This paper concentrates on Lower Hybrid heat-
ing as it presents some attractive features for
present as well as future tokarwk devices.

Some type of auxiliary heating must be jsed to
supplement Ohmic Keating in Tokamaks. Ohmic Heating
will not be adequate to raise the plasma temperature
to reaction levels for two basic reasons. First,
the plasma resistivity is inversely proportional to
the temperature so as we heat the plassr.a the resis-
tivity decreases. The efficiency of heating or the
energy absorption falls off as the resistance _
decreases. If one considers the fundamental I S
relationship of the power absorption or dissipation
in the plasma, one could increase the currttnt, how-
ever there is a fundamental current limit which is
related to the e of the machine - that is:
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In large microwave heating systems for tokaraaks,
th'Fëe fundamental engineering problems must be solved.

1. Generation of the microwave power.

2. Transmission to the tokamak device.
3. Coupling of the energy to the plasma.

Microwave Power Generation I
To a large extent, microwave power generation

has evolved as a result of the broadcast industry
and Department of Defense effort. High power (50 kW)
C'A klystrons were developed for commercial UHF TV,
while rnultimegawatt klystrons were developed for high
power radar tracking facilities. Unfortunately,
there appeared to be a large, gap in power/pulse width
performance between a 50 kW klystron and a 5 MW
klystron capable of pulse widths on the order of
tens of usec's. The deep space program helped fill
this gap as the requirement for long pulse or CW
high power microwave tubes became necessary for long
range tracking, satellite communication and radar
mapping of terrestial bodies. Klystrons capable of
1/2 MW C'A in the S band region are now available.

Proposals have been received from vendors to
build 1 MW long pulse klystrons and the feasibility
of 2 MW klystrons is now being explored.

As experiments progress in the Lower Hybrid
regime, we continue to look into large microwave
systems to determine their feasibility, costs and
space requirements. Table 1.0 shows the basic
specifications for LH systems which now exist or
are being proposed at PPPL.

Table 1.0

HI
ATC
PDX
TFTR

Existing and ProDosed PPL LH Systems

Free

155
800
1.1
1-2

i. Power

MHz 15
MHz 200
GHz 5
CHz 50

Transmission i

kW
kW
MW
MW

System

Pulse

3
20
0.3
0.5

Width

msec
msec
sec
sec

Transmission of the rf power from the power
source to the tokamak is relatively easy at these
low microwave frequencies. The transmission losses
do not become serious until the transport distance
starts to exceed 100 to 200 ft. Power density in
the wave guide is not a limiting factor. Some
component development is necessary, however, it does
not appear to be a major stumbling block. In par-
ticular, large high power isolators or circulators
will be required to effectively isolate klystrons
from the plasmo load. Dependent on machine para-
meters, the plasma coupling can vary widely, caus-
ing severe mismatch conditions which must not be

been designed co handle the voltage
main problem to be solved is a therm
should not be too serious considerili
bandwidth requirements.

Coupling System

One of the most critical elemen!
system is the coupling system — the
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difficult and yet attractive feature:
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ing efficiency would be on the order
should be pointed out, however, that
out the plasma volume has not been d
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main problem to be solved is a thermal onu which
should not be too serious considering the narrow
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Coupling System

One of the most critical elements of the rf
systers is the coupling system — the point where the
hardware and the plasma are in close proximity. LH
coupling systems and feeds present one of th«; most
difficult and yet attractive features of an rf
heating system. Initial experiments utilized an
open ended waveguide as the feed mechanism for the
microwave energy. Experiments with this feed gave
promising results (aee Figure 1). This shows .the rf
induced temperature as a function of time. The
number of eV per watt is very encouraging. If the
entire plasma were heated by this amount,' the heat-
ing efficiency would be on the order of &QZ. It
should be pointed out, however, that heating through-
out the plasma volume has not been demonstrated as
of yet.
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Figure 1 - ATC Lower Hybrid
Heating Test Results

The attractive part of the waveguide feed is
the fact that no discrete components such as coils,
must be placed within the vacuum vessel. However,
one does encounter a problem at the waveguide wir.dow
Interface. The high power/low pressure combin.-:io:i
can ionize the gas left in the waveguide setting up
a barrier to further transmission of microwave energy.

Experiments are now being conducted for multiple
waveguide feeds, i.e. a phased array scheme. This
type of feed system seems to hold the promise of
better coupling and deeper penetration of the rf
energy into the plasma.



To a large extent, microwave power generation
has evolved as a result of the broadcast industry
and Department of Defense effort. High power (50 fcW)
CV klystrons we.'e developed for commercial 'JHF TV,
while multimegawatt klystrons were developed for high
power radar cracking facilities. Unfortunately,
there appeared to Se a large gap in power/pulse width
performance between a 50 k.W klystron and a 5 >W
klystron capable of pulse widths on the order of
tens of usec's. The dee'? space program helped fill
this gap as the requirement for long pulse or C'A'
high power microwave tubes became necessary for long
range tracking, satellite communication and radar
mapping of terrestial bodies. Klystrons capable of
1/2 >!W CV in the S band region are now available.

Proposals have been received from vendors to
build 1 >!W long pulse klystrons and the feasibility
of 2 MW klystrons is now being explored.

As experiments progress in che Lower Hybrid
regime, we continue to look into large microwave
systems "o determine their feasibility, costs and
space requirements. Table 1.0 shows the basic
specifications for LH systems which now exist or
are being proposed at PFPL.
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Transmission of the rf power from the power
source to the tokamak is relatively easy at these
low microwave frequencies. The transmission losses
do not become serious until the transport distance
starts to exceed I JO to 200 ft. Power density in
the wave guide is not a limiting factor. Some
component development is necessary, however, it does
not appear to be a major stumbling block. In par-
ticular, large high power isolftors or circulators
will be required to effectively isolate klystrons
from the plasma load. Dependent on machine para-
meters, the piastra coupling can vary widely, caus-
ing severe mismatch conditions which must not be
reflected back to the output klystrons. Since, how-
ever, the systems will have a relatively narrow
bandwidth, development of these components should
not be too difficult.

Of some concern also is the development of
high power ceramic windows which can efficiently
transmit the microwave energy while providing a
reliable vacuum break where the waveguide inter-
faces with the tokamak device. Again, the task
does not appear formidable, as windows have already
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The attractive part of the waveguide feed is
the fact that no discrete components such'as coils,
must be placed within the vacuum vessel. However,
one does encounter a problem at the waveguide window
interface. The high power/low pressure combination
can ionize the gas left in the waveguide setting up
a barrier to further transmission of microwave energy.

Experiments are now being conducted for multiple
waveguide feeds, i.e. a phased array scheme. This
type of feed system seems to hold the promise of
better coupling and deeper penetration of the rf
energy into the plasma.

Future Systems

To date, the microwave systems built for LH
heating have been relatively small. We are presently
planning larger systems for use on the tokamaks which
are in the building or planning stages. One such
system is a 5 MW, 1.1 GHz system being considered
for use on the PDX machine. Figure 2 is a simplified
block diagram depicting the major components.

You will note that there are 6 - 1 MW klystrons
shown. (We've allowed for 1 dB of loss.)



Figure 2 - Proposed 5 MW L Band System
for PDX Lower Hybrid Heating

These tubes are an extrapolation of the exist-
ing 1/2 MW klystrons. A system such as this would
be approximately 50% efficient, i.e. rf output/dc
power input, and would operate at a voltage oi
about 80 kV.

It will take approximately 2-1/2 years to
design and build this system and will require about
55 man years of labor. The overall program cost by
the time of completion (considering escalation,
contingencies, etc.) will be on the order of $7M.

Considering this system as a stepping stone to
a larger one for TFTR machine, we project that the
size of an rf system would be on the order of 30 to
50 MW. To generate this power we would envision the
development of a 2 KW klystron. This system would
be comparable in size to the presently proposed TFTR
Neutral Injection system.

A concept in simplified form is shown in
Figure 3.

In this system we would use 30 - 2 MW klystrons
and 15 high voltage power supplies. It's possible,
for a slight cost Increase, to be able to design
the presently proposed TFTR Neutral Injection power
supplies so they can be shared by this rf system.

A system this size would probably cost on the
order of $30M. This considers escalation, contin-
gencies, and development. This cost is somewhat
the same as that of the TFTR Neutral Beam system
costs. A building about 160' X 160' would be
required to house this system (this includes every-
thing from the AC breakers to the waveguide outputs
of the klystrons).

\ Figure 3 -. Conceptual Lower
Heating System for the TFTR
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