429 research outputs found

    Detection of radio pulses from extensive air showers

    Get PDF

    Cosmic rays studied with a hybrid high school detector array

    Get PDF
    The LORUN/NAHSA system is a pathfinder for hybrid cosmic ray research combined with education and outreach in the field of astro-particle physics. Particle detectors and radio antennae were mainly setup by students and placed on public buildings. After fully digital data acquisition, coincidence detections were selected. Three candidate events confirmed a working prototype, which can be multiplied to extend further particle detector arrays on high schools.Comment: 10 pages, 6 figures. Nigl, A., Timmermans, C., Schellart, P., Kuijpers, J., Falcke, H., Horneffer, A., de Vos, C. M., Koopman, Y., Pepping, H. J., Schoonderbeek, G., Cosmic rays studied with a hybrid high school detector array, Europhysics News (EPN), Vol. 38, No. 5, accepted on 22/08/200

    New method for the time calibration of an interferometric radio antenna array

    Get PDF
    Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect high-energy cosmic rays via the radio emission from atmospheric extensive air showers. LOPES is an array of dipole antennas placed within and triggered by the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology, Germany. The antennas are digitally combined to build a radio interferometer by forming a beam into the air shower arrival direction which allows measurements even at low signal-to-noise ratios in individual antennas. This technique requires a precise time calibration. A combination of several calibration steps is used to achieve the necessary timing accuracy of about 1 ns. The group delays of the setup are measured, the frequency dependence of these delays (dispersion) is corrected in the subsequent data analysis, and variations of the delays with time are monitored. We use a transmitting reference antenna, a beacon, which continuously emits sine waves at known frequencies. Variations of the relative delays between the antennas can be detected and corrected for at each recorded event by measuring the phases at the beacon frequencies.Comment: 9 pages, 9 figures, 1 table, pre-print of article published in Nuclear Inst. and Methods in Physics Research, A, available at: http://www.sciencedirect.com/science/article/B6TJM-4Y9CF4B-4/2/37bfcb899a0f387d9875a5a0729593a

    An air shower array for LOFAR: LORA

    Get PDF
    LOFAR is a new form of radio telescope which can detect radio emission from air showers induced by very high-energy cosmic rays. It can also look for radio emission from particle cascades on the Moon induced by ultra high-energy cosmic rays or neutrinos. To complement the radio detection, we are setting up a small particle detector array LORA (LOfar Radboud Air shower array) within an area of ∌300\sim 300 m diameter in the LOFAR core. It will help in triggering and confirming the radio detection of air showers with the LOFAR antennas. In this paper, we present a short overview about LORA and discuss its current status.Comment: 10 pages (using article.cls), 6 figures, accepted for the proceedings of 22nd European Cosmic Ray Symposium, 3-6 August 2010, Finlan

    A deep campaign to characterize the synchronous radio/X-ray mode switching of PSR B0943+10

    Get PDF
    We report on simultaneous X-ray and radio observations of the mode-switching pulsar PSR B0943+10 obtained with the XMM-Newton satellite and the LOFAR, LWA and Arecibo radio telescopes in November 2014. We confirm the synchronous X-ray/radio switching between a radio-bright (B) and a radio-quiet (Q) mode, in which the X-ray flux is a factor ~2.4 higher than in the B-mode. We discovered X-ray pulsations, with pulsed fraction of 38+/-5% (0.5-2 keV), during the B-mode, and confirm their presence in Q-mode, where the pulsed fraction increases with energy from ~20% up to ~65% at 2 keV. We found marginal evidence for an increase in the X-ray pulsed fraction during B-mode on a timescale of hours. The Q-mode X-ray spectrum requires a fit with a two-component model (either a power-law plus blackbody or the sum of two blackbodies), while the B-mode spectrum is well fit by a single blackbody (a single power-law is rejected). With a maximum likelihood analysis, we found that in Q-mode the pulsed emission has a thermal blackbody spectrum with temperature ~3.4x10^6 K and the unpulsed emission is a power-law with photon index ~2.5, while during B-mode both the pulsed and unpulsed emission can be fit by either a blackbody or a power law with similar values of temperature and photon index. A Chandra image shows no evidence for diffuse X-ray emission. These results support a scenario in which both unpulsed non-thermal emission, likely of magnetospheric origin, and pulsed thermal emission from a small polar cap (~1500 m^2) with a strong non-dipolar magnetic field (~10^{14} G), are present during both radio modes and vary in intensity in a correlated way. This is broadly consistent with the predictions of the partially screened gap model and does not necessarily imply global magnetospheric rearrangements to explain the mode switching.Comment: To be published on The Astrophysical Journa

    Air Shower Measurements with LOFAR

    Get PDF
    Air showers from cosmic rays emit short, intense radio pulses. LOFAR is a new radio telescope, that is being built in the Netherlands and Europe. Designed primarily as a radio interferometer, the core of LOFAR will have a high density of radio antennas, which will be extremely well calibrated. This makes LOFAR a unique tool for the study of the radio properties of single air showers. Triggering on the radio emission from air showers means detecting a short radio pulse and discriminating real events from radio interference. At LOFAR we plan to search for pulses in the digital data stream - either from single antennas or from already beam-formed data - and calculate several parameters characterizing the pulse shape to pick out real events in a second stage. In addition, we will have a small scintillator array to test and confirm the performance of the radio only trigger.Comment: Proceedings of the ARENA 2008 workshop, to be published in NIM

    Radio Emission in Atmospheric Air Showers: First Measurements with LOPES-30

    Get PDF
    When Ultra High Energy Cosmic Rays interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating toward the ground. LOPES-30 is an absolutely calibrated array of 30 dipole antennas investigating the radio emission from these showers in detail and clarifying if the technique is useful for largescale applications. LOPES-30 is co-located and measures in coincidence with the air shower experiment KASCADE-Grande. Status of LOPES-30 and first measurements are presented.Comment: Proceedings of ARENA 06, June 2006, University of Northumbria, U

    The nature of the low-frequency emission of M51: First observations of a nearby galaxy with LOFAR

    Get PDF
    The grand-design spiral galaxy M51 was observed with the LOFAR High Frequency Antennas (HBA) and imaged in total intensity and polarisation. This observation covered the frequencies between 115 MHz and 175 MHz. We produced an image of total emission of M51 at the mean frequency of 151 MHz with 20 arcsec resolution and 0.3 mJy rms noise, which is the most sensitive image of a galaxy at frequencies below 300 MHz so far. The integrated spectrum of total radio emission is described well by a power law, while flat spectral indices in the central region indicate thermal absorption. We observe that the disk extends out to 16 kpc and see a break in the radial profile near the optical radius of the disk. Our main results, the scale lengths of the inner and outer disks at 151 MHz and 1.4 GHz, arm--interarm contrast, and the break scales of the radio--far-infrared correlations, can be explained consistently by CRE diffusion, leading to a longer propagation length of CRE of lower energy. The distribution of CRE sources drops sharply at about 10 kpc radius, where the star formation rate also decreases sharply. We find evidence that thermal absorption is primarily caused by HII regions. The non-detection of polarisation from M51 at 151 MHz is consistent with the estimates of Faraday depolarisation. Future searches for polarised emission in this frequency range should concentrate on regions with low star formation rates.Comment: 20 pages, 18 figures, accepted for publication in A&

    Amplitude calibration of a digital radio antenna array for measuring cosmic ray air showers

    Get PDF
    Radio pulses are emitted during the development of air showers, where air showers are generated by ultra-high energy cosmic rays entering the Earth's atmosphere. These nanosecond short pulses are presently investigated by various experiments for the purpose of using them as a new detection technique for cosmic particles. For an array of 30 digital radio antennas (LOPES experiment) an absolute amplitude calibration of the radio antennas including the full electronic chain of the data acquisition system is performed, in order to estimate absolute values of the electric field strength for these short radio pulses. This is mandatory, because the measured radio signals in the MHz frequency range have to be compared with theoretical estimates and with predictions from Monte Carlo simulations to reconstruct features of the primary cosmic particle. A commercial reference radio emitter is used to estimate frequency dependent correction factors for each single antenna of the radio antenna array. The expected received power is related to the power recorded by the full electronic chain. Systematic uncertainties due to different environmental conditions and the described calibration procedure are of order 20%.Comment: Article accepted by Nuclear Instruments and Methods in Physics Research, A (NIM A

    The KASCADE-Grande Experiment and the LOPES Project

    Full text link
    KASCADE-Grande is the extension of the multi-detector setup KASCADE to cover a primary cosmic ray energy range from 100 TeV to 1 EeV. The enlarged EAS experiment provides comprehensive observations of cosmic rays in the energy region around the knee. Grande is an array of 700 x 700 sqm equipped with 37 plastic scintillator stations sensitive to measure energy deposits and arrival times of air shower particles. LOPES is a small radio antenna array to operate in conjunction with KASCADE-Grande in order to calibrate the radio emission from cosmic ray air showers. Status and capabilities of the KASCADE-Grande experiment and the LOPES project are presented.Comment: To appear in Nuclear Physics B, Proceedings Supplements, as part of the volume for the CRIS 2004, Cosmic Ray International Seminar: GZK and Surrounding
    • 

    corecore