99 research outputs found

    Alternative splicing of the mouse embryonic poly(A) binding protein (Epab) mRNA is regulated by an exonic splicing enhancer: a model for post-transcriptional control of gene expression in the oocyte

    Get PDF
    Embryonic poly(A) binding protein (EPAB), expressed in oocytes and early embryos, binds and stabilizes maternal mRNAs, and mediates initiation of their translation. We identified an alternatively spliced form of Epab lacking exon 10 (c.Ex10del) and investigated the regulation of Epab mRNA alternative splicing as a model for alternative splicing in oocytes and early preimplantation embryos. Specifically, we evaluated the following mechanisms: imprinting; RNA editing and exonic splicing enhancers (ESEs). Sequence analysis led to the identification of two single nucleotide polymorphisms (SNPs): one was detected in exon 9 (rs55858A/G), and served as a marker for the parental origin of the alternatively spliced form, and the other was found in exon 10 (rs56574G/C), and co-segregated with the exon 9 SNP. We found that the presence of rs56574G in exon 10 led to the formation of an ESE, leading to efficient exclusion of exon 10. Real-time RT–PCR results revealed a 5-fold increase in the expression of the c.Ex10del alternative splicing variant in animals carrying rs56574G/G in exon 10 compared with rs56574C/C at the same locus. Our findings suggest that SNPs may alter the ratio between alternative splicing variants of oocyte-specific proteins. The role that these subtle differences play in determining individual reproductive outcome remains to be determined

    Ectopic Pregnancy as a Model to Identify Endometrial Genes and Signaling Pathways Important in Decidualization and Regulated by Local Trophoblast

    Get PDF
    The endometrium in early pregnancy undergoes decidualization and functional changes induced by local trophoblast, which are not fully understood. We hypothesized that endometrium from tubal ectopic pregnancy (EP) could be interrogated to identify novel genes and pathways involved in these processes. Gestation-matched endometrium was collected from women with EP (n = 11) and intrauterine pregnancies (IUP) (n = 13). RNA was extracted from the tissue. In addition, tissues were prepared for histological analysis for degree of decidualization. We compared a) the samples from EP that were decidualized (n = 6) with non-decidualized samples (n = 5), and b) the decidualized EP (n = 6) with decidualization-matched IUP (n = 6) samples using an Affymetrix gene array platform, with Ingenuity Pathway Analysis, combined with quantitative RT-PCR. Expression of PRL and IGFBP1 was used to confirm the degree of decidualization in each group. There were no differences in PRL or IGFBP1 expression in the decidualization-matched samples but a marked reduction (P<0.001) in the non-decidualized samples. Decidualization was associated with increased expression of 428 genes including SCARA5 (181-fold), DKK1 (71-fold) and PROK1 (32-fold), and decreased expression of 230 genes including MMP-7 (35-fold) and SFRP4 (21-fold). The top canonical pathways associated with these differentially expressed genes were Natural Killer Cell and Wnt/b-Catenin signaling. Local trophoblast was associated with much less alteration of endometrial gene expression with an increase in 56 genes, including CSH1 (8-fold), and a reduction in 29 genes including CRISP3 (8-fold). The top associated canonical pathway was Antigen Presentation. The study of endometrium from tubal EP may promote novel insights into genes involved in decidualization and those influenced by factors from neighboring trophoblast. This has afforded unique information not highlighted by previous studies and adds to our understanding of the endometrium in early pregnancy

    Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    Get PDF
    BACKGROUND: Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. METHODS AND PRINCIPAL FINDINGS: Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. CONCLUSIONS: These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window

    Integrative multi-omics module network inference with Lemon-Tree

    Get PDF
    Module network inference is an established statistical method to reconstruct co-expression modules and their upstream regulatory programs from integrated multi-omics datasets measuring the activity levels of various cellular components across different individuals, experimental conditions or time points of a dynamic process. We have developed Lemon-Tree, an open-source, platform-independent, modular, extensible software package implementing state-of-the-art ensemble methods for module network inference. We benchmarked Lemon-Tree using large-scale tumor datasets and showed that Lemon-Tree algorithms compare favorably with state-of-the-art module network inference software. We also analyzed a large dataset of somatic copy-number alterations and gene expression levels measured in glioblastoma samples from The Cancer Genome Atlas and found that Lemon-Tree correctly identifies known glioblastoma oncogenes and tumor suppressors as master regulators in the inferred module network. Novel candidate driver genes predicted by Lemon-Tree were validated using tumor pathway and survival analyses. Lemon-Tree is available from http://lemon-tree.googlecode.com under the GNU General Public License version 2.0.Comment: minor revision; 13 pages text + 4 figures + 4 tables + 4 pages supplementary methods; supplementary tables available from the author

    Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea

    Get PDF
    Cadophora luteo-olivacea is a lesser-known fungal trunk pathogen of grapevine which has been recently isolated from vines showing decline symptoms in grape growing regions worldwide. In this study, 80 C. luteo-olivacea isolates (65 from Spain and 15 from South Africa) were studied. Inter-simple-sequence repeat-polymerase chain reaction (ISSR-PCR) generated 55 polymorphic loci from four ISSR primers selected from an initial screen of 13 ISSR primers. The ISSR markers revealed 40 multilocus genotypes (MLGs) in the global population. Minimum spanning network analysis showed that the MLGs from South Africa clustered around the most frequent genotype, while the genotypes from Spain were distributed all across the network. Principal component analysis and dendrograms based on genetic distance and bootstrapping identified two highly differentiated genetic clusters in the Spanish and South African C. luteo-olivacea populations, with no intermediate genotypes between these clusters. Movement within the Spanish provinces may have occurred repeatedly given the frequent retrieval of the same genotype in distant locations. The results obtained in this study provide new insights into the population genetic structure of C. luteo-olivacea in Spain and highlights the need to produce healthy and quality planting material in grapevine nurseries to avoid the spread of this fungus throughout different grape growing regions

    161 EFFECT OF MELOXICAM TREATMENT ON PREGNANCY RATES IN HOLSTEIN HEIFERS

    No full text

    The effects of PPAR? agonist rosiglitazone on neointimal hyperplasia in rabbit carotid anastomosis model

    No full text
    PubMed ID: 22716287Background: Neointimal hyperplasia involving smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) degradation is an important component of atherosclerosis. It develops as a response to vascular injury after balloon angioplasty and vascular graft placement. Matrix metalloproteinases (MMPs) induce SMC proliferation, migration and contribute to intimal hyperplasia by degrading ECM. PPAR? agonists inhibit SMC proliferation, migration and lesion formation. In this study, we aimed to investigate the effects of PPAR? agonist rosiglitazone on neointimal hyperplasia and gelatinase (MMP-2 and MMP-9) expressions in rabbit carotid anastomosis model.Methods: New Zealand white rabbits (n = 13, 2.7-3.2 kg) were divided into placebo and treatment groups. Right carotid artery (CA) was transected and both ends were anastomosed. Treatment group (n = 6) received rosiglitazone (3 mg/kg/day/p.o.) and placebo group (n = 7) received PBS (phosphate buffered saline, 2.5 ml/kg/day/p.o.) for 4 weeks postoperatively. After the sacrification, right and left CAs were isolated. Morphometric analyses and immunohistochemical examinations for gelatinases were performed.Results: Intimal area (0.055 ± 0.005 control vs 0.291 ± 0.020 µm 2 anastomosed, p &lt; 0,05) and index (0.117 ± 0.002 control vs 0.574 ± 0.013 anastomosed, p &lt; 0,01) significantly increased in anastomosed arteries compared to control arteries from placebo group. However, in rosiglitazone-treated group, intimal area (0.291 ± 0.020 PBS vs 0.143 ± 0.027 rosiglitazone, p &lt; 0,05) and index (0.574 ± 0.013 PBS vs 0.263 ± 0.0078 rosiglitazone, p &lt; 0,01) significantly decreased. Furthermore, gelatinase immunopositivity was found to have significantly increased in anastomosed arteries from placebo group and decreased with rosiglitazone treatment.Conclusions: These results suggest that rosiglitazone may prevent neointimal hyperplasia, which is the most important factor involved in late graft failure, by inhibiting gelatinase enzyme expression. © 2012 Guzeloglu et al.; licensee BioMed Central Ltd
    corecore