384 research outputs found

    Demonstration of an electrostatic-shielded cantilever

    Full text link
    The fabrication and performances of cantilevered probes with reduced parasitic capacitance starting from a commercial Si3N4 cantilever chip is presented. Nanomachining and metal deposition induced by focused ion beam techniques were employed in order to modify the original insulating pyramidal tip and insert a conducting metallic tip. Two parallel metallic electrodes deposited on the original cantilever arms are employed for tip biasing and as ground plane in order to minimize the electrostatic force due to the capacitive interaction between cantilever and sample surface. Excitation spectra and force-to-distance characterization are shown with different electrode configurations. Applications of this scheme in electrostatic force microscopy, Kelvin probe microscopy and local anodic oxidation is discussed.Comment: 4 pages and 3 figures. Submitted to Applied Physics Letter

    PIV measurements over a double bladed Darrieus-type vertical axis wind turbine: A validation benchmark

    Get PDF
    Vertical axis wind turbines (VAWTs) are very attractive for in-home power generation since they can be adopted even at low wind speeds and highly variable wind direction. Even if significant experimental research activity has been carried out to improve VAWTs performance, the ability to accurately reproduce flow field characteristics around turbine blades by CFD (computational fluid dynamics) techniques represents a powerful approach to further enhance wind turbines performance. Thanks to CFD, in fact, it is possible to reproduce flow characteristics with a detail level impossible to achieve by experiments. Nevertheless, in order to appropriately analyze the flow structure by CFD application, an accurate validation is essential, and high-quality measurements of some main flow characteristics are required. In recent publications the authors investigated, both experimentally and numerically, the performance of an innovative double bladed Darrieus-type VAWT, with the aim to define an optimal configuration also focusing on self-starting ability of the prototype by employing CFD technique. Nevertheless, comparison between experiments and numerical results was made only in terms of power and torque coefficient. To overcome such limitation, in this paper the authors propose an experimental benchmark case for CFD results validation, describing detailed flow field in correspondence of one pair of blades of the innovative Darrieus-type VAWT in static conditions. Measurements were performed employing Particle Image Velocimetry (PIV) technique on a scaled model of the turbine blades realized by 3D printing. An uncertainty analysis was also performed which showed a high accuracy of the obtained experimental results. The measurements of the main flow characteristics (bi-dimensional velocity components) were then used for a test case CFD validation of two different turbulence model

    Optimized modeling and design of a pcm-enhanced h2 storage

    Get PDF
    Thermal and mechanical energy storage is pivotal for the effective exploitation of renewable energy sources, thus fostering the transition to a sustainable economy. Hydrogen-based systems are among the most promising solutions for electrical energy storage. However, several technical and economic barriers (e.g., high costs, low energy and power density, advanced material requirements) still hinder the diffusion of such solutions. Similarly, the realization of latent heat storages through phase change materials is particularly attractive because it provides high energy density in addition to allowing for the storage of the heat of fusion at a (nearly) constant temperature. In this paper, we posit the challenge to couple a metal hydride H-2 canister with a latent heat storage, in order to improve the overall power density and realize a passive control of the system temperature. A highly flexible numerical solver based on a hybrid Lattice Boltzmann Phase-Field (LB-PF) algorithm is developed to assist the design of the hybrid PCM-MH tank by studying the melting and solidification processes of paraffin-like materials. The present approach is used to model the storage of the heat released by the hydride during the H-2 loading process in a phase change material (PCM). The results in terms of Nusselt numbers are used to design an enhanced metal-hydride storage for H-2-based energy systems, relevant for a reliable and cost-effective "Hydrogen Economy". The application of the developed numerical model to the case study demonstrates the feasibility of the posited design. Specifically, the phase change material application significantly increases the heat flux at the metal hydride surface, thus improving the overall system power density

    Quantum Zeno and anti-Zeno effects by indirect measurement with finite errors

    Full text link
    We study the quantum Zeno effect and the anti-Zeno effect in the case of `indirect' measurements, where a measuring apparatus does not act directly on an unstable system, for a realistic model with finite errors in the measurement. A general and simple formula for the decay rate of the unstable system under measurement is derived. In the case of a Lorentzian form factor, we calculate the full time evolutions of the decay rate, the response of the measuring apparatus, and the probability of errors in the measurement. It is shown that not only the response time but also the detection efficiency plays a crucial role. We present the prescription for observing the quantum Zeno and anti-Zeno effects, as well as the prescriptions for avoiding or calibrating these effects in general experiments.Comment: 4 pages, 3 figure

    Performance Evaluation of Microbial Fuel Cells Fed by Solid Organic Waste: Parametric Comparison between Three Generations

    Get PDF
    Abstract In this paper, the results of three generations of reactors for the direct conversion of the Organic Fraction of Municipal Solid Waste (OFMSW) in electrical energy are presented. The different generations corresponds to the prototype realized in the Energy Lab of the University of Naples "Parthenope" and have been monitored along a period of over three years in terms of polarization and power curves, in order to assess the feasibility of Microbial Fuel Cell as a promising source for future, sustainable energy generation

    A role for gangliosides in astroglial cell differentiation in vitro.

    Full text link

    Serum amyloid A primes microglia for ATP-dependent interleukin-1\u3b2 release

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1\u3b2 (IL-1\u3b2), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1\u3b2 release is promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with toll-like receptor (TLR) ligands

    Electron Transport Properties of Single-Molecule-Bearing Multiple Redox Levels Studied by EC-STM/STS

    Get PDF
    Multielectron systems as possible components of molecular electronics devices are attracting compelling experimental and theoretical interest. Here we studied by electrochemical scanning tunneling techniques (EC-STMicroscopy and EC-STSpectroscopy) the electron transport properties of a redox molecule endowed with two redox levels, namely, the hydroquinone/quinone (H2Q/Q) couple. By forming self-assembled monolayers on Au(111) of oligo-phenylene-vinylene (OPV) derivatized H2Q/Q moieties, we were able to explore the features of the tunneling current/overpotential relation in the EC-STS setup. The behavior of the tunneling current sheds light onto the mechanism of electron transport involving the redox levels of the H2Q/Q redox pair coupled to tip and substrate electrodes

    Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-\u3b1 and lipopolysaccaride (LPS). TNF-\u3b1 time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-\u3b1 and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-\u3b1 or LPS challenge, being higher in microglia with TNF-\u3b1 and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-\u3b1 treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS
    corecore