405 research outputs found

    Drug–excipient interactions in ketoprofen: A vibrational spectroscopy study

    Get PDF
    Ketoprofen (3-benzoyl-alpha-methylbenzeneacetic acid) is a widely used nonsteroidal anti-inflammatory drug (NSAID), always administered in the form of drug-excipient physical mixtures (PMs). The occurrence of possible interactions between ketoprofen and two commonly used excipients-lactose (LAC) and polyvinylpyrrolidone (PVP)-was evaluated, through vibrational spectroscopy techniques [both Raman and Inelastic Neutron Scattering (INS)]. Spectral evidence of drug:excipient close contacts, which were enhanced by aging, was verified for the (1:1) (w:w) (ketoprofen:PVP) and (ketoprofen:LAC) PMs, both by Raman and INS. These interactions were found to involve mainly the central carbonyl and the terminal methyl-carboxylic moieties of the ketoprofen molecule, this being reflected in particular vibrational modes, such as the methyl torsion, the out-of-plane C-OH bending, and the inter-ring C=O stretching

    Location of the active site for enzyme-adenylate formation in DNA ligases.

    Full text link

    Utility of international normative 20 m shuttle run values for identifying youth at increased cardiometabolic risk

    Get PDF
    The purpose of this study was to examine the ability of international normative centiles for the 20 m shuttle run test (20mSRT) to identify youth at increased cardiometabolic risk. This was a cross-sectional study involving 961 children aged 10–17 years (53% girls) from the United Kingdom. Receiver operating characteristic (ROC) curves determined the discriminatory ability of cardiorespiratory fitness percentiles for predicting increased cardiometabolic risk. ROC analysis demonstrated a significant but poor discriminatory accuracy of cardiorespiratory fitness in identifying low/high cardiometabolic risk in girls (AUC = 0.58, 95% CI: 0.54–0.63; p = 0.04), and in boys (AUC = 0.59, 95% CI: 0.54–0.63; p = 0.03). The cardiorespiratory fitness cut-off associated with high cardiometabolic risk was the 55th percentile (sensitivity = 33.3%; specificity = 84.5%) in girls and the 60th percentile (sensitivity = 42.9%; specificity = 73.6%) in boys. These 20mSRT percentile thresholds can be used to identify children and adolescents who may benefit from lifestyle intervention. Nonetheless, further work involving different populations and cardiometabolic risk scores comprising of different variables are needed to confirm our initial findings

    Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Get PDF
    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells de-pendent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining inter-molecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based as-say of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding do-main, one of three domains constituting the LigIII cat-alytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging in-termediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation

    Arts handbook

    Get PDF
    2006 handbook for the faculty of Art

    Label-free electrochemical monitoring of DNA ligase activity

    Get PDF
    This study presents a simple, label-free electrochemical technique for the monitoring of DNA ligase activity. DNA ligases are enzymes that catalyze joining of breaks in the backbone of DNA and are of significant scientific interest due to their essential nature in DNA metabolism and their importance to a range of molecular biological methodologies. The electrochemical behavior of DNA at mercury and some amalgam electrodes is strongly influenced by its backbone structure, allowing a perfect discrimination between DNA molecules containing or lacking free ends. This variation in electrochemical behavior has been utilized previously for a sensitive detection of DNA damage involving the sugar-phosphate backbone breakage. Here we show that the same principle can be utilized for monitoring of a reverse process, i.e., the repair of strand breaks by action of the DNA ligases. We demonstrate applications of the electrochemical technique for a distinction between ligatable and unligatable breaks in plasmid DNA using T4 DNA ligase, as well as for studies of the DNA backbone-joining activity in recombinant fragments of E. coli DNA ligase

    An atypical BRCT-BRCT interaction with the XRCC1 scaffold protein compacts human DNA ligase IIIα within a flexible DNA repair complex

    Get PDF
    The XRCC1-DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT-BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS-MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT-BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold

    Six-year changes in body mass index and cardiorespiratory fitness of English schoolchildren from an affluent area

    Get PDF
    We compared values of body mass index (BMI) and cardiorespiratory fitness (20 m shuttle-run test) of n=157 boys and n=150 girls aged 10-11 measured in 2014 with measures from 2008 and 1998. Boys' fitness was lower (d=0.68) in 2014 than 2008, despite a small (d=0.37) decline in BMI. Girl's BMI changed trivially (d=0.08) but cardiorespiratory fitness was lower (d=0.47) in 2014 than 2008. This study suggests fitness is declining at 0.95% per year, which exceeds the 0.8% rate of decline we reported between 1998 and 2008 and is double the global average of 0.43%. Declines in fitness were independent of changes in BMI suggesting continued reductions in English children's habitual physical activity levels

    Arene oxidation with malonoyl peroxides

    Get PDF
    Malonoyl peroxide 7, prepared in a single step from the commercially available diacid, is an effective reagent for the oxidation of aromatics. Reaction of an arene with peroxide 7 at room temperature leads to the corresponding protected phenol which can be unmasked by aminolysis. An ionic mechanism consistent with the experimental findings and supported by isotopic labeling, Hammett analysis, EPR investigations and reactivity profile studies is proposed
    • …
    corecore