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ABSTRACT

The XRCC1–DNA ligase III� complex (XL) is critical
for DNA single-strand break repair, a key target for
PARP inhibitors in cancer cells deficient in homolo-
gous recombination. Here, we combined biophysical
approaches to gain insights into the shape and con-
formational flexibility of the XL as well as XRCC1 and
DNA ligase III� (LigIII�) alone. Structurally-guided
mutational analyses based on the crystal structure
of the human BRCT–BRCT heterodimer identified the
network of salt bridges that together with the N-
terminal extension of the XRCC1 C-terminal BRCT
domain constitute the XL molecular interface. Cou-
pling size exclusion chromatography with small an-
gle X-ray scattering and multiangle light scattering
(SEC-SAXS–MALS), we determined that the XL is
more compact than either XRCC1 or LigIII� , both of
which form transient homodimers and are highly dis-
ordered. The reduced disorder and flexibility allowed
us to build models of XL particles visualized by nega-
tive stain electron microscopy that predict close spa-
tial organization between the LigIII� catalytic core
and both BRCT domains of XRCC1. Together our
results identify an atypical BRCT–BRCT interaction
as the stable nucleating core of the XL that links
the flexible nick sensing and catalytic domains of

LigIII� to other protein partners of the flexible XRCC1
scaffold.

GRAPHICAL ABSTRACT

INTRODUCTION

The DNA repair gene XRCC1 was first identified in a screen
of human cDNAs that complemented the alkylation and
X-ray sensitive phenotypes of the mutant Chinese Ham-
ster Ovary cell line EM9 (1). Besides DNA damage sen-
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sitivity, a hallmark feature of these cells is a high sponta-
neous level of sister chromatid exchanges, indicative of hy-
perrecombination (1). XRCC1 protein lacks enzymatic ac-
tivity; yet, it plays a key role in multiple DNA repair path-
ways by acting as a scaffold that binds to both DNA single
strand breaks and gaps, poly (ADP-ribose) and to numer-
ous DNA repair enzymes (2). DNA ligase III� (LigIII�)
was the first XRCC1-interacting protein to be identified
(3), and is critical to bridge two DNA ends to promote
specific intermolecular DNA end joining (4). This was fol-
lowed by DNA glycosylases (5–10), AP endonuclease 1 (11),
and DNA polymerase � (Pol�) (12,13), implicating XRCC1
in coordinating observed product complexes (14) for the
short patch subpathway of base excision repair. An inter-
action with automodified PARP1 serves to recruit XRCC1
and other interacting proteins that also include the end-
processing enzymes, polynucleotide kinase phosphorylase
(PNKP) (15), aprataxin (APTX) (16) and APLF (17) to
DNA single strand breaks (18–20). While these protein-
protein interactions and the phenotype of xrcc1 cells show
XRCC1 is a key factor in single-strand break repair (SSBR),
other SSBR and base excision repair (BER) pathways in-
volving DNA ligase I (LigI) and other DNA replication
proteins are at least partially functionally redundant (21–
24). This redundancy between LigI- and LigIII�-dependent
subpathways also occurs in nucleotide excision repair and in
back-up pathways of DNA double-strand break repair, also
known as alternative end joining (25–27).

XRCC1-deficient cells have reduced steady-state levels of
both Pol� and LigIII�, indicating that XRCC1 interactions
promote the stability of these DNA repair enzymes along
with their recruitment to DNA damage sites (28,29). In con-
trast, the steady-state levels of the other XRCC1-interacting
proteins appear unaffected by XRCC1 absence. Interest-
ingly, the binding sites for XRCC1-interacting proteins ap-
pear to be arranged linearly along the XRCC1 polypep-
tide with Pol� interacting with the N-terminal region and
LigIII� with the C-terminal region (2). While most binding
regions appear non-overlapping, enabling XRCC1 to as-
semble multiprotein complexes, PNKP, MRE11, aprataxin
and APLF binding sites are mutually exclusive and depen-
dent upon XRCC1 phosphorylation, explaining the detec-
tion of distinct XRCC1 complexes containing either PNKP
or aprataxin (2,15,17,30–34). Interestingly, mutations in
the genes encoding XRCC1, PNKP and aprataxin are the
causative factor in inherited neurodegenerative diseases,
indicating that XRCC1-dependent repair of single strand
breaks with non-ligatable ends plays a key role in neuronal
cells (35–37).

Three folded domains have been identified within
XRCC1 (Figure 1A); an N-terminal domain that inter-
acts with Pol� (38), a central BRCT domain (X1BR1) that
interacts with poly(ADP-ribosyl)ated (PARylated) PARP1
(18,39) and a C-terminal BRCT domain (X1BR2) that
interacts with the C-terminal BRCT domain of LigIII�
(L3BR) (40–42). While inactivation of the central X1BR1
domain results in DNA damage hypersensitivity due to a
defect in S phase-dependent DNA repair, disruption of the
interaction between the C-terminal BRCTs of XRCC1 and
LigIII�, which results in destabilization of LigIII�, does
not, indicating that XRCC1 has nuclear DNA repair func-

tions that are independent of LigIII� (43–45). In contrast,
LigIII� is essential for mitochondrial DNA metabolism but
XRCC1 is not present in these organelles (21,23,46,47).

For these various XRCC1 biological functions, it is im-
portant to understand the XRCC1 architectural structure
and its relationship to its scaffolding functions. Since the
C-terminal BRCT domains of XRCC1 and LigIII� can
form homodimers (48,49), we reasoned that these proteins
may function as homodimers as well as heterodimers. Yet,
although the structure of a hybrid complex between hu-
man L3BR and mouse X1BR2 has been determined (48),
the structure of full-length complexes of dimeric XRCC1
and XRCC1-LigIII� (XL) are unknown. Here, we solved
the crystal structure of human L3BR complexed with hu-
man X1BR2 and furthermore define the architectures and
structural flexibility of human XRCC1, LigIII� and the
XL heterodimer by combining small-angle X-ray scattering
(SAXS) and electron microscopy (EM).

MATERIALS AND METHODS

Protein expression and purification

Full-length XRCC1 and LigIII� [in pRSFduet (Novagen)]
and XRCC1�N [residues 294–633 in pET32a (Novagen)]
were expressed in Escherichia coli Rosetta cells, and puri-
fied using the same protocol as LigIII� described previ-
ously (50). L3BR (residues 825–922) and X1BR2 (residues
538–633) domains were expressed from pET28a with N-
terminal His-tag in E. coli Rosetta cells. After Ni-NTA
(Qiagen) affinity chromatography, proteins were purified
by Superdex 200 (GE Healthcare) size exclusion column.
For pull-down assay, L3BR, X1BR2 and X1BR1 (residues
294–417) were cloned into pGEX-6p1 (GE Healthcare).
GST-tagged L3BR, X1BR2 and X1BR1 were expressed
in E. coli Rosetta cells. After glutathione-sepharose chro-
matography (GE Healthcare), proteins were further puri-
fied by Superdex 200 column. X1BR1 was further purified
by Sephadex 100 (GE Healthcare) after GST-X1BR1 was
cleaved with precission protease. GFP- and MBP-tagged
X1BR1 and L3BR were expressed from pET28a with N-
terminal His-tag in E. coli Rosetta cells and purified us-
ing Ni-NTA affinity chromatography, followed by Superdex
200 size exclusion chromatography.

For crystallization, L3BR (residues 844–922 with C922S
mutation) and X1BR2 (residues 538–633) were fused by a
22-amino acid flexible linker containing a His-tag and pre-
cission protease cleavage site, and the fusion protein was ex-
pressed in E. coli Rosetta cells. The L3BR-X1BR2 fusion
protein was cleaved by purified precission protease after Ni-
NTA column, and then further purified by Superdex 200
column. Selenomethionine labeled L3BR-X1BR2 fusion
protein was expressed in Rosetta cells using amino acids
to suppress methionine biosynthesis, as described (51), and
was purified by the same protocol as the native protein. Pro-
tein crystallization conditions and structure determination
methods are described in Supplementary Material.

Full-length XRCC1-LigIII� and XRCC1 were purified
from insect cells after infection with baculoviruses encoding
streptactin-tagged LigIII� and His-tagged XRCC1 (52,53).
The XL complex was purified sequentially by HisTrap HP
(GE Healthcare), Superdex 200 16/60 (GE Healthcare) and
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Figure 1. Human BRCT–BRCT heterodimer structure stably links XRCC1 and LigIII� via a mutationally verified interface. (A) Domain organization of
human XRCC1 and LigIII� with the C-terminal BRCT domains used for crystallization (red and blue-boxes) (B) GFP-fluorescence-based competition
assay (see Supplementary Figure S3) measuring specific binding affinity of L3BR832 and L3BR844 for X1BR2. The data shown represent the mean values
and standard deviations from three independent experiments. (C) Structure of human XLBR-BR complex (X1BR2, blue; L3BR, red) is superimposed on
to previously reported structures of heterodimers between mouse X1BR2 and human L3BR with two different lengths of N-stretch region. The different
lengths of N-stretch regions of X1BR2 and L3BR constructs are highlighted. The XLBR-BR interfaces, which are classified based on the location and
main type of interaction [electrostatic (E region, top, green), hydrophobic (H region, middle, purple) and polar (P region, bottom, blue) interactions], are
indicated. (D) Panels show close-up of three main binding interfaces between X1BR2 and L3BR. (E) Effects of substituting residues that are located at
the BRCT–BRCT interface on X1BR2–L3BR complex formation measured by native gel analysis; upper left panel, substitution of amino acids in the E
region; upper right panel, substitution of Leu847 of L3BR, an equivalent of Leu539 of X1BR2; lower panel, substitution of amino acids in the H and P
regions of the binding interface. The X1BR-only and L3BR-only control reactions are shown in the leftmost and rightmost lane of each gel, respectively.
For residues in E region (upper left panel) or H and P regions (lower panel), gels were run with negative control (X1BR2 or L3BR alone) and positive
control (with wild-type X1BR2, WT) reactions, and then combined in a single panel to compare their effects on L3BR binding. Representative gels from
two independent experiments are shown. Since the theoretical pI for L3BR is 9.22 compared with 4.90 for X1BR2, L3BR does not enter the gels, which
are run at pH 7.5, unless it is complexed with X1BR2.
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dsDNA cellulose (Sigma Aldrich) column chromatography.
6His-XRCC1 was purified sequentially by HisTrap HP and
Superdex 200 16/60 column chromatography.

Protein–protein interaction assays

In a fluorescence-based competition assay, GST-L3BR (7
�M) and X1BR2-GFP (8 �M) were pre-incubated in a
buffer containing 50 mM Tris–HCl pH 7.5, 150 mM NaCl,
10% glycerol and 2 mM DTT for 20 min on ice, and com-
plexes were immobilized to GSH-coated magnetic beads
(Promega). The beads were washed three times with the
same buffer. The pre-bound complexes were competed off
by adding MBP, MBP-L3BR832 and MBP-L3BR844 (0–25
�M). After the beads were pelleted using a magnet, the re-
lease of the X1BR2-GFP was monitored by the increased
GFP fluorescence of the supernatant in 96-well plates using
Synergy-2 microplate reader (BioTek).

To confirm the predicted key role of specific amino acids
in the heterodimer interface, mutant versions of X1BR2
(residues 538–633) and L3BR (residues 825–922) were
made using the Quickchange site-directed mutagenesis kit
(Stratagene). Due to the high tendency of X1BR2 to ag-
gregate in the absence of L3BR, we changed Leu626 in the
C-terminus of X1BR2, which contributes to crystal pack-
ing interactions in both X1BR2 and the XLBR–BR complex
structure (data not shown) to Glu. Since this substitution
did not affect L3BR binding and it also significantly re-
duced aggregation, it was designated as wild type (WT) in
Figure 1E and used as the template for further mutational
analyses. Mutant proteins were expressed and purified by
the same protocol as the native protein. Purified X1BR2 (8
�M) and L3BR proteins (0–12 �M) were incubated in 20
�l binding buffer (50 mM Tris–HCl pH 7.5, 150 mM NaCl,
2 mM DTT and 10% glycerol) for 30 min at 22◦C. Samples
were separated by electrophoresis on a native 10% polyacry-
lamide gel as described by Kang et al. (54).

Multi-angle light scattering coupled to size-exclusion chro-
matography

SEC-MALS was carried out either in parallel with SAXS
(see below) or stand-alone. For stand-alone SEC-MALS,
XRCC1 and the XL complex were injected at 0.35 ml/min
with an AKTAmicro (GE Healthcare) onto a Superdex
200 Increase 10/300 GL column equilibrated in 40 mM
HEPES pH 7.5, 200 mM NaCl, 10% glycerol and 0.1
mM TCEP. Molecular masses were determined using the
Dawn HELEOS II MALS and OptiLab T-rEX online re-
fractive index detectors (Wyatt Technology). The detectors
were calibrated with the BSA monomer and data processed
with ASTRA Version 6.1.6.5 (Wyatt Technology). The size-
exclusion column was calibrated using protein standards
(Bio-Rad).

Small angle X-ray scattering

SAXS was performed at the SIBLYS beamline at the Ad-
vanced Light Source (55,56). For SAXS coupled with multi-
angle light scattering in line with size-exclusion chromatog-
raphy (SEC-SAXS-MALS) experiments, 60 �l containing

either 4.3 mg/ml 6His-XRCC1 in 200 mM NaCl, 20 mM
Tris–HCl pH 7.5 , 2% glycerol (Figure 2); 5.96 mg/ml Strp-
LigIII�/6His-Flag-XRCC1 in 50 mM Tris–HCl pH 7.5, 100
mM NaCl, 5 mM MgCl2, 0.2 mM PMSF, 1 mM ben-
zamidine (Figure 5). SEC-SAXS-MALS were collected at
the ALS beamline 12.3.1 LBNL Berkeley, California. X-
ray wavelength was set at � = 1.127 Å and the sample-to-
detector distance was 2100 mm resulting in scattering vec-
tors, q, ranging from 0.01 to 0.4 Å–1. The scattering vector
is defined as q = 4�sin �/�, where 2� is the scattering an-
gle. All experiments were performed at 20◦C and data was
processed as described (57). Briefly, a SAXS flow cell was di-
rectly coupled with an online Agilent 1260 Infinity HPLC
system using a Shodex KW804 or Superdex 200 300/10 col-
umn giving similar SAXS results for Strep-LigIII�/6His-
Flag-XRCC1. The column was equilibrated with running
buffer as indicated above with a flow rate of 0.5 ml/min.
55 �l of each sample was run through the SEC and three
second X-ray exposures were collected continuously during
a 30-min elution. The SAXS frames recorded prior to the
protein elution peak were used to subtract all other frames.
The subtracted frames were investigated by radius of gyra-
tion (Rg) derived by the Guinier approximation I(q) = I(0)
exp(–q2Rg

2/3) with the limits qRg < 1.5 (58). The elution
peak was mapped by comparing the integral of ratios to
background and Rg relative to the recorded frame using the
program SCÅTTER. Non-uniform Rg values across an elu-
tion peak represent a heterogeneous assembly. Final merged
SAXS profiles, derived by integrating multiple frames at
the peak of the elution peak, where used for further anal-
ysis including Guinier plot which determined aggregation
free state. The program SCÅTTER was used to compute
the pair distribution function (P(r)). The distance r where
P(r) approach zero intensity identifies the maximal dimen-
sion of the macromolecule (Dmax). P(r) functions were nor-
malized based on the molecular weight of the assemblies
as determined by SCÅTTER using volume of correlation
Vc (59). Eluent was subsequently split 3 to 1 between the
SAXS line and a series of UV at 280 and 260 nm, multi-
angle light scattering (MALS), quasi-elastic light scattering
(QELS) and refractometer detectors. MALS experiments
were performed using an 18-angle DAWN HELEOS II light
scattering detector connected in tandem to an Optilab re-
fractive index concentration detector (Wyatt Technology).
System normalization and calibration was performed with
BSA monomer using a 45 �l sample at 10 mg/ml in the
same SEC running buffer and a dn/dc value of 0.19. The
light scattering experiments were used to perform analytical
scale chromatographic separations for Mw determination of
the principle peaks in the SEC analysis. UV, MALS, and
differential refractive index data was analyzed using Wyatt
Astra 7 software to monitor the homogeneity of the sam-
ple across the elution peak complementary to the above-
mentioned SEC-SAXS signal validation.

Full-length LigIII�, XRCC1�N, phosphorylated
XRCC1�N (XRCC1�N-p), L3BR, X1BR2 and
XRCC1�N-p/L3BR complex samples were dialyzed
with a buffer containing 25 mM Tris–HCl pH 7.5, 150
mM NaCl, 10% glycerol and 2 mM DTT. SAXS data
were collected at three different concentrations on the
ALS beamline 12.3.1 LBNL Berkeley, California in high-
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throughput (HT) mode (60). Incident X-rays were tuned to
a wavelength of � = 1.0 Å at a sample-to-detector distance
of 1.5 m, resulting in scattering vectors (q) ranging from
0.01 to 0.31 Å−1. All experiments were performed at 10◦C
and data was processed as described (55). Briefly, the data
were acquired at short and long-time exposures (0.5 s, 5 s)
then scaled and merged to obtained interference free SAXS
profile. Further data processing was identical with process
described for SEC-SAXS merged profiles.

Solution structure modeling

An initial atomistic model of XRCC1�N was built by con-
necting the NMR structure of X1BR1 (PDB ID: 2D8M)
and our crystal structure of X1BR2 by MODELLER (61).
A full length atomistic model of XRCC1 was built by
connecting NMR structure of XRCC1 N-terminal domain
(PDB ID: 1XNA) (62) to the XRCC1�N model. An initial
homology model of full length LigIII� was built based on
the crystal structure of LigIII� (PDB ID: 3L2P) (63), the
NMR structure of the N-terminal zinc finger (ZnF; PDB
ID: 3OD8) (64) and our crystal structure of the C-terminal
L3BR domain by connecting the regions with linkers mod-
eled by MODELLER (61). Two initial atomistic models of
dimeric XL complexes were built by adding missing link-
ers into two EM-derived conformers (see below). Minimal
molecular dynamics (MD) simulations were performed on
flexible regions in the models by the rigid body modeling
strategy BILBOMD in order to optimize the conforma-
tional space of domain linkers alone (XL complex) or in-
dividual domains (XRCC1�N, XRCC1, LigIII� and XL
complex) (65). The experimental SAXS profiles were then
compared to theoretical scattering curves generated from
atomistic models using FOXS (66,67) followed by multistate
model selection by MultiFOXS (68).

Crosslinking, negative-stain electron microscopy and image
analysis

Chemical crosslinking of XRCC1 and the XL complex
(dsDNA-cellulose-purified) was carried out in the dark, on
ice, for 5 min with 0.05% (v/v) glutaraldehyde in 40 mM
HEPES pH 7.5, 200 mM NaCl, 10% glycerol. Reactions
were quenched with 1 M Tris pH 7.5 and buffer exchanged
to EM buffer (40 mM HEPES pH 7.5, 50 mM NaCl, 0.1
mM TCEP). Crosslinked and non-crosslinked samples were
diluted in EM buffer and deposited onto glow-discharged
(Agar Scientific) carbon-coated copper grids (Electron Mi-
croscopy Sciences) for 1 min before blotting excess liquid
with Whatman No. 1 filter paper. Freshly-prepared uranyl
formate (1.5%; Electron Microscopy Sciences) was imme-
diately applied for 1 min, followed by blotting excess liq-
uid and air drying. Micrographs were collected using a FEI
Tecnai T12 transmission electron microscopy fitted with a
LaB6 filament and operated at 120 keV at room tempera-
ture. Low-dose mode was implemented in SerialEM (69) to
acquire images at 67 000× magnification (corresponding to
a pixel size of 1.64 Å) using a FEI Eagle 4k × 4k CCD cam-
era with defocus values between 0.5 and 2 �m.

Image processing was carried out with the Scipion frame-
work (70). None of the processing steps corrected for con-

trast transfer function nor applied symmetry. Automatic
particle-picking using a reference-free algorithm (71) re-
sulted in 78,400 coordinates of XRCC1 (non-crosslinked)
and 12,700 coordinates of the crosslinked XL complex. Par-
ticles were extracted with two-fold downsampling in 264
Å boxes. Bad picks were discarded through iterative 2D
classification using CL2D from Xmipp (72).The XL dataset
was pruned to remove non-XL particles, resulting in 7648
particles that were used to generate an initial model through
a stochastic gradient descent algorithm (73). The initial
model was low-pass filtered to 60 Å and used for 3D classi-
fication (74) into three classes using a 200 Å circular mask.
Classes 1 and 3 (31% and 28%, respectively) were grouped
based on their overall similarity and the resulting merged
class 1 (low-pass filtered to 60 Å) was refined using the
grouped particles without applying a mask (EM conformer
1). Class 2 (41% of particles) was refined separately (EM
conformer 2). The resolutions of the XL complex conform-
ers were determined using the gold-standard Fourier shell
correlation at the 0.5 criterion (75). Crystal and solution
structures were docked into the EM maps using UCSF
Chimera (76).

RESULTS

Human XRCC1 and DNA ligase III� C-terminal BRCT do-
mains determine homodimer and heterodimer formation

XRCC1 and LigIII� are elongated, multidomain proteins
that form a stable complex through interactions between
their C-terminal BRCT domains (48,49,63) (Figure 1A).
While there is significant evidence that the XL complex is
a key factor in BER and SSBR, the ability of these pro-
teins to also form homodimers that may have specific func-
tions (21,23,43,44,48,49), raises questions about the mecha-
nisms that underlie formation of heterodimers and homod-
imers. In initial size exclusion experiments with the purified
BRCT domains of human XRCC1 and LigIII�, L3BR832

(residues 832–922) expressed either as an N-terminal MBP-
fusion protein (Supplementary Figure S1A) or fused to C-
terminal GFP (Supplementary Figure S1B) forms a dimer,
whereas the dimerization of X1BR2 fused to C-terminal
GFP appears to be transient under these conditions, con-
sistent with the reported concentration-dependent dimer-
ization of XRCC1 (49). Notably, deletion of 12 N-terminal
residues from L3BR832 results in the MBP-fusion protein
behaving as a monomer (Supplementary Figure S2A). De-
spite efficient homodimerization, untagged L3BR832 read-
ily formed a 1:1 complex with MBP or GFP-tagged X1BR2
(Supplementary Figure S2). This finding suggests that the
N-terminal linker region of L3BR (residues 832–843) is
important for homodimerization but is dispensable for
heterodimerization. Notably, in all size-exclusion chro-
matography experiments, the formation of heterodimers of
X1BR2 and L3BR was considerably more favorable than
homodimerization (Supplementary Figure S2).

To measure the apparent dimerization affinity of BRCT–
BRCT interactions, a GFP-fluorescence-based, competi-
tion binding assay was developed (see Materials and Meth-
ods and Supplementary Figure S3). For this assay, GST-
tagged L3BR832 was immobilized on glutathione-coated

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/1/306/6039925 by W

ashington U
niversity School of M

edicine Library user on 27 February 2021



Nucleic Acids Research, 2021, Vol. 49, No. 1 311

magnetic beads in complex with a GFP-labeled X1BR2
domain. The release of the X1BR2–GFP protein into the
supernatant was monitored by the increase in GFP flu-
orescence as MBP-tagged L3BR832 protein was added to
the binding reaction for competition. In this competition
binding assay (Figure 1B), L3BR844 shows a slightly higher
X1BR2-binding affinity than L3BR832 (EC50 values of 0.67
± 0.08 and 1.24 ± 0.06 �M for L3BR844 and L3BR832,
respectively), whereas MBP alone showed no interaction
(Supplementary Figure S3). Together, we conclude that
LigIII� and XRCC1 specifically heterodimerize with sub-
to low micromolar affinity through their C-terminal BRCT
domains, and the N-terminal linker of L3BR contributes
to the determination of homodimer and heterodimer for-
mation, prompting us to further investigate the interface of
human XL heterodimer and to identify key determinants of
the specific XL complex formation.

BRCT heterodimer atomic resolution structure

We solved and refined the human X1BR2–L3BR844 com-
plex (XLBR–BR) structure at 2.4 Å resolution (Supplemen-
tary Table S1, Figure 1C and Supplementary Figure S4).
Overall, the structure of this complex resembles the previ-
ously reported hybrid complex between human L3BR and
mouse X1BR2 (48) (Figure 1C). In the human XLBR–BR

complex, there is a V-shaped ‘head-to-head’ arrangement of
interacting L3BR–X1BR2 domains that buries 1164 Å2 of
solvent accessible surface. Complementary surfaces of the
BRCT domains are mostly contributed by helix �1 and the
proximal ‘�1-�2 loop’, together with a short N-terminal ex-
tension (N-stretch) from each BRCT domain (Figure 1C).
In comparison with the hybrid XLBR–BR structure, there
is an increase in the tilt angle between L3BR and X1BR2
domains in the human structure. Notably, the structure of
the hybrid XLBR–BR heterodimer with a longer X1BR2 N-
stretch (Figure 1C, cyan, PDB ID: 3QVG) is more com-
pact than the human XLBR–BR complex with a shorter N-
stretch region (Figure 1C, red/blue), suggesting that an ad-
ditional electrostatic interaction between the X1BR2 N-
stretch residue Asp531 and L3BR residues Arg914 and
Lys915 contributes to compaction of the complex (Figure
1C and Supplementary Figure S5). However, there are also
differences in the main interaction interface between the
similar-length hybrid XLBR–BR (PDB ID: 3PC8) (48) and
the human complex, presumably reflecting differences in the
amino acids of mouse and human X1BR that contribute to
the interface.

In the human complex, three protruding side chains of
X1BR (Leu539 from the N-stretch and Arg560 and Arg564
from helix �1) contact the hydrophobic C-terminal half of
�1 in L3BR (Figure 1D). Together they make a network
of electrostatic interactions with nearby residues Asp849,
Asp876 and Asp878 of L3BR. Similar, but not strictly
equivalent, reciprocal interactions are made by analogous
residues of L3BR. Leu847 within the N-stretch of L3BR
and Arg870 from �1 contact the hydrophobic C-terminal
half of �1 and its proximal surfaces of X1BR2 (Figure 1D).
Overall, the two BRCT domains are interlinked by protrud-
ing Leu and Arg residues from each subunit that stabilize

the human XLBR-BR heterodimer by a combination of elec-
trostatic (E region), hydrophobic (H region) and polar inter-
actions (P region) (see Figure 1C and D). In the E region,
Arg560 and Arg564 from �1 of X1BR2 form a network
of salt bridges with Asp849, Asp876 and Asp878 residues
from L3BR (Figure 1D). In addition, Arg564 from �1 of
X1BR2 makes a hydrogen bond with the main chain car-
bonyl oxygen of Ala874 of L3BR. The center of the BRCT–
BRCT interface (H region) is contributed by hydrophobic
side chains from each subunit that form an interdomain hy-
drophobic core (Figure 1D). X1BR2 Leu539 appears crit-
ical for this hydrophobic core by virtue of extensive hy-
drophobic interactions with Leu847, Tyr871, Ala874 and
Phe875 of L3BR. In addition, Leu539 main-chain amide
hydrogen bonds with the Tyr871 side-chain of L3BR. Sim-
ilarly, L3BR Leu847 makes hydrophobic interactions with
XRCC1 residues Leu539, Tyr565 and Phe569. Finally, in
the P region, Arg870 of L3BR makes hydrogen bonds with
the side-chain amide of Asn570 and the main-chain car-
bonyl oxygens of Leu539 and Ala568 in X1BR2 (Figure 1D,
P region).

X1BR2 N-stretch and �1 are critical for XL heterodimeriza-
tion

To test the structurally-implicated critical roles of the E,
H and P regions in XL heterodimerization, a series of
amino acid substitutions were introduced into all three re-
gions of the XLBR-BR interface (Figure 1E). Substitutions
of Leu539 from the N-stretch of X1BR2 with Ala or Glu
completely disrupted complex formation with L3BR as de-
tected by native gel electrophoresis (Figure 1E). This re-
veals the functional importance of this region extending
from the BRCT core and also supports and extends the pre-
vious finding that the N-terminal segment of X1BR2 sig-
nificantly expands the buried surface area upon binding to
L3BR (48). In contrast, L3BR Leu847, a structural equiv-
alent of Leu539 in the N-stretch of XRCC1, appears to be
dispensable for XL complex formation (Figure 1E), despite
the similar appearance of both Leu residues and their lo-
cal interactions with either side of the dimer interface. Al-
though contradictory to a previous report (48), this is con-
sistent with the dispensable role of the N-terminal linker of
L3BR for XRCC1 binding and is indicative of functional
asymmetry in this heterotypic BRCT–BRCT interaction.
Given the dispensable role of L3BR Leu847, the severe de-
fect in the X1BR2 Y565A/F569A double mutant (Figure
1E) is likely to be explained by some other interaction, per-
haps a change in packing between XRCC1 helices �1 and �3
due to the replacement of bulky aromatic side chains. While
X1BR2 Y565A, F569A and N570A mutants exhibited lit-
tle or no effect on complex formation with L3BR (Figure
1E), the R560A, R564A and R560A/R564A mutants ei-
ther failed to or had greatly diminished ability to form com-
plexes with L3BR. Taken together, these mutational analy-
ses defined specific hydrophobic interactions involving the
N-stretch (Leu539) of XRCC1 and corresponding surfaces
of LigIII�, along with electrostatic interactions between �1s
from XRCC1 (Arg560 and Arg564) and LigIII�, as key de-
terminants of XRCC1–LigIII� heterodimer formation.
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Atypical asymmetric BRCT–BRCT interaction promotes XL
heterodimerization

The �1 helices of X1BR2 and L3BR domains share a
remarkable sequence similarity (50% identity in �1 and
surrounding residues, versus 29% overall sequence iden-
tity for the whole BRCT domains; Supplementary Figure
S6), including similar patterns of charged and hydropho-
bic patches of surface residues around the dimer interface.
Given the pseudo two-fold symmetry of interacting sub-
units in the XLBR-BR heterodimer (Supplementary Figure
S6), this raises the question of why the XL heterodimer is
preferred over the L3BR homodimer (Supplementary Fig-
ure S2). To address this, we compared structures of our
XLBR–BR heterodimer to the X1BR2 homodimer (PDB ID:
1CDZ) (48) [2.4 Å resolution, r.m.s.d. of 0.8 Å for C�
atoms]. The XLBR–BR complex deviates significantly from
strict 2-fold symmetry. Notably, the �1 of the L3BR sub-
unit in the XL heterodimer is rotated ∼16◦ relative to the
corresponding �1 of X1BR2 in the homodimer, as a result
of different inter-subunit contacts in the two complexes with
L3BR Arg870 acting as a pivot point for this conforma-
tional rotation (Supplementary Figure S6).

In the E region, �1 rotation causes a 3 Å displacement
of L3BR Asp849 side chain with respect to Asp541 in the
X1BR2 homodimer. Notably, this change results in a new
salt bridge between X1BR2 Arg564 and L3BR Asp849 in
the XL heterodimer (Figure 1D) that is essential for het-
erodimerization. In addition, L3BR Asp876 stands in for
X1BR2 Asn570, completing the salt bridge network in the
XL heterodimer (Figure 1D, E region). In the H region, the
rotated BRCT conformation in the XL dimer appears to
strengthen the X1BR2 Leu539-L3BR Tyr871 interaction,
based on the closer distance (3.3 Å) in the XL heterodimer
compared to the Leu539–Tyr565 interaction in the X1BR2
homodimer (3.9 Å) (Figure 1D). In contrast to the E and H
regions, interactions in the P region of the XL heterodimer
are diminished compared to the P region of the X1BR2 ho-
modimer. For example, unlike Arg560 in the X1BR2 ho-
modimer, L3BR Ser866 in the XL complex is unable to
make interactions with Asn570 and Glu572 of the X1BR2
subunit (Figure 1D and E, and Supplementary Figure S6).

The asymmetric XL structure explains the functional
asymmetry between the essential role of X1BR2 Leu539
and the dispensable role of L3BR Leu847 (Figure 1E). This
asymmetry may provide flexibility in the L3BR N-stretch
to allow the rotated conformation of L3BR upon X1BR2
binding. Collectively, the asymmetry induced by conforma-
tional rotation of L3BR contributes to favorable XL het-
erodimerization by strengthening the two crucial interac-
tions mediated by Leu539 and Arg564 of X1BR2 in the XL
heterodimer (Figure 1D and E).

Full-length XRCC1 and LigIII� form transient homodimers
with a largely unstructured multi-domain architecture

Apart from ordered X1BR1, X1BR2 and N-terminal do-
mains (Figure 1A), XRCC1 appears unstructured. To ex-
perimentally examine the intrinsic flexibility of the full-
length human XRCC1, we used SAXS (77,78) and SEC-
SAXS-MALS. SEC-SAXS analysis of individual SAXS
profiles across the elution peak revealed a large decrease

of Rg (65–45 Å) and molecular mass (110–70 kDa) (Fig-
ure 2A). This indicates heterogeneity within the sample that
presumably reflects transient dimerization of XRCC1 (49).
The Kratky plot (Figure 2B) from the merged SAXS curve
(Supplementary Figure S7A), together with the P(r) func-
tions (Figure 2C), demonstrate that XRCC1 is a partially
unfolded, multidomain scaffold-like protein with an esti-
mated maximal elongation of ∼230 Å that matches the
value estimated from analytic sedimentation equilibrium
studies (49).

As phosphorylation of the region between X1BR1–
X1BR2 by casein kinase II (CK2) stabilizes the protein and
is required for localization to DNA damage foci and effi-
cient SSBR activity (30,34,79) we purified XRCC1�N after
co-expression with CK2� in E. coli (80). In comparison with
unmodified XRCC1�N, we found that phosphorylation
of XRCC1�N does not alter its binding activity towards
L3BR (Supplementary Figure S8) or its solution conforma-
tion, based on the nearly identical SAXS profiles of phos-
phorylated and unphosphorylated XRCC1�N (Figure 2B).
The P(r) curve for XRCC1�N-p exhibits a gradual fall off
at high R-values that is indicative of a large Dmax (∼200
Å). The radius of gyration (Rg = 53 Å) is also unexpect-
edly large for the 340-residue XRCC1�N-p protein (Figure
2C) and, similar to full length XRCC1, XRCC1�N-p is a
mixture of monomers and dimers in solution as judged by
estimated molecular mass (59) (Supplementary Table S2).
Collectively, these experimental data are consistent with a
transient dimerization of XRCC1 via the X1BR2 domains.

To explore the conformational space that can be occupied
by XRCC1, we performed rigid body modeling that was val-
idated by SAXS fitting. Initially we determined the atom-
istic model of XRCC1�N by connecting the NMR struc-
ture of X1BR1 (PDB ID: 2D8M) and the crystal structure
of X1BR2 (see Materials and Methods). A selected minimal
ensemble model (Figure 2D), that includes 40% extended
monomer, 35% extended dimer and 25% compact dimer,
was the best fit for the experimental SAXS profile and P(r)
function (Figure 2C and Supplementary Figure S7A). Next,
we modeled full length XRCC1 by connecting the NMR
structure of XRCC1 N-terminal domain (PDB ID: 1XNA)
(62) to the XRCC1�N model. An ensemble model (Figure
2E) that includes 61% extended monomer, 14% extended
dimer and 25% compact dimer closely matched the experi-
mental SAXS profile and P(r) function (Figure 2B and C,
and Supplementary Figure S7A). While these ensembles do
not provide a unique model, they validate the intrinsically
disordered nature and transient dimerization of XRCC1.

To gain insights into the structure of full-length hu-
man LigIII�, we initially determined a solution state of
the L3BR832. Based on the estimated molecular mass and
SAXS fitting of rigid body modeling, the solution structure
model for L3BR832 closely matches the two-fold symmetric
homodimer of L3BR (PDB ID: 3PC7) (Figure 3A and Sup-
plementary Figure S7C, Table S2). The results of the Kratky
plot (Figure 3B) and the P(r) function (Figure 3A) anal-
yses of full-length LigIII� indicate that, like LigIII� (63),
LigIII� has a disordered multidomain architecture. Unlike
the L3BR domain that is exclusively dimeric in solution
(Supplementary Figure S7C, Table S2), full-length LigIII�
is a mixture of monomer and dimers in solution, with max-
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Figure 2. Human XRCC1 is an elongated, disordered protein that transiently forms homodimers. (A) SEC-SAXS-MALS chromatographs for XRCC1.
Solid lines represent the UV 280 nm (light magenta) or SAXS signal (magenta) in arbitrary units, while symbols represent molecular mass (light magenta)
and Rg values for each collected SAXS frame (magenta) versus elution time. The SEC-SAXS-MALS results, which show full-length XRCC1 is a mixture of
monomer/dimer, are representative of at least two independent preparations of XRCC1. (B) Normalized Kratky plot of XRCC1 (magenta) in comparison
with XRCC1�N-p (dark green) and XRCC1�N (light green). (C) Normalized P(r) functions of XRCC1 (magenta) in comparison with XRCC1�N-p
(dark green) matching theoretical P(r) functions of atomistic models (black) shown in panels D and E. Weighted ensemble atomistic model shown in
molecular surface representation were used to fit experimental SAXS curves for XRCC1�N-p (D) and XRCC1 (E) shown in Supplementary Figure S7A
and represented as theoretical P(r) functions in panel C.

imal elongation of ∼200 Å (Figure 3C and Supplementary
Figure S7B, Table S2). A comparison of normalized Kratky
plots of LigIII� with LigIII� indicates a similar level of
protein disorder (Figure 3B) despite Lig III� behaving as
a monomer due to the absence of the L3BR domain (63).
As expected (63), a comparison of LigIII� (LigIII� 1–755)
missing the disordered C-terminal 107 residues and LigIII�
missing the N-terminal ZnF domain (LigIII� 1–755 �ZnF)
(Figure 3B) confirmed the significant contribution of the
ZnF region to the disordered character of LigIII� (63). To-
gether, our rigid body modeling analysis indicates that the
N- terminal ZnF extension and the C-terminal BRCT do-
main of LigIII�, contribute significantly to the elongated
shape of the DNA ligase III polypeptides.

Visualization of XL complex by negative stain electron mi-
croscopy reveals a loosely packed domain arrangement

To gain insights into the possible domain organization of
the XL complex, we co-purified the full-length proteins
and confirmed that they form a ∼180 kDa heterodimer by
SEC-MALS despite eluting earlier than expected from the
gel filtration column (Figure 4A and B). XRCC1 and the
XL complex were each stabilized with chemical crosslink-

ing (Figure 4C), buffer exchanged and visualized using
negative-stain EM. Micrograph quality was greatly im-
proved by the crosslinking and subsequent buffer exchange
steps (Supplementary Figure S9). Yet, 2D classification of
the single particles from the XRCC1 sample revealed a con-
formationally heterogenous population of XRCC1 (Figure
4D) that is, based on our SAXS data (Figure 2A), likely to
reflect a mixture of monomers and dimers. Crosslinking did
not reduce this heterogeneity (data not shown). Efforts to
generate an initial 3D model of XRCC1 failed, probably due
to its intrinsic structural and oligomeric heterogeneity. De-
spite efficient crosslinking, classes of particles representing
XRCC1-only particles were detected in the population of
particles from the XL sample (Figure 4E). After removal of
the XRCC1-only particles, the uniformly-sized XL particles
(Figure 4F) were subjected to 3D classification to identify
conformationally different forms of the XL complex (Sup-
plementary Figure S10). Particles belonging to two visu-
ally similar classes were pooled and used to refine EM con-
former 1. Particles from a third class were used to create EM
conformer 2 (both conformers shown in Figure 4G).

Some structural heterogeneity for the XL complex was
expected given the flexible and dynamic nature of both
proteins. The conformers presented here do not repre-
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Figure 3. Human LigIII� is an elongated, disordered protein that transiently forms homodimers. (A) Normalized P(r) functions for experimental SAXS
curves for full length LigIII� (cyan) and L3BR (green) are fitted to the theoretical P(r) functions (black) of atomistic models of full length LigIII� (panel
C) and the two-fold symmetric crystal structure of the L3BR homodimer (PDBID: 3PC7, black dots) and L3BR monomer (red). (B) Comparison of
normalized Kratky plots of LigIII� (cyan), L3BR dimer (green) with the SAXS curves of LigIII� (dark violet), LigIII� 1–755 (violet), and LigIII� 1–755
�ZnF (dark green) (taken from (63)). Kratky plots show persistent disorder of full length LigIII� and LigIII� but significant less disorder in the LigIII�
construct with truncated ZnF domain. (C) Weighted ensemble atomistic models of LigIII� monomer (left) and homodimer (right) are shown in surface
representation. Corresponding fits of the SAXS curves for the atomistic models are shown in the Supplementary Figure S7D and as a theoretical P(r)
function in panel A.

sent definitive models of domain organization, but rather
present a framework for modelling potential domain ar-
rangements. Although other conceivable domain configura-
tions might also be consistent with the EM results, our do-
main docking EM map interpretation was guided by known
crystal structures of LigIII� domains and our insights into
the conformation of XRCC1 alone from 2D classes (Figure
4D). The XRCC1 monomer often adopts a linear arrange-
ment that can be observed in both EM conformers (Fig-
ure 4G). The published atomic coordinates of individual
XRCC1 domains were docked within this linear protrusion
so as to have the N-terminal domain (XRCC-N) distal to
the rest of the complex and the L3BR–X1BR2 heterodimer
at the interface with the remaining volume. At the other side
of the complex, we interpreted the isolated spherical den-
sity as the LigIII� ZnF. Linking the two sides of the com-
plex would be the LigIII� catalytic fragment composed of
the DNA binding, adenylation and OB-fold domains (63).
These conserved domains are known to adopt an open con-
formation, as seen for the Saccharolobus solfataricus DNA
Ligase (81) as well as a closed conformation with nicked
DNA (63). The EM map for conformer 1 accommodates the
catalytic domains in an approximately open conformation
whereas a more compact LigIII� is a better fit for the wider
volume seen in conformer 2. Overall, our interpretation of

two EM maps suggest a dynamic LigIII� catalytic fragment
that in turn orients XRCC1 at different positions within the
complex. The full dynamics of XRCC1 are probably un-
derestimated due to limitations in visualizing unstructured
linkers by EM. However, the observed conformers allowed
us to build a framework of domains upon which we added
quantitative assessment of flexibility by SAXS as described
below.

The XL complex is more structured and compact than
XRCC1 and LigIII�

Prior to investigating the solution structure of full-length
XL, we determined that the interaction of L3BR832 with
XRCC1�N-p did not change the extended shape of
XRCC1�N as judged by the Kratky plot, P(r) function
and SAXS parameters of the complex (Dmax of ∼200 Å
and Rg of 54 Å (Figure 5A and B, Supplementary Table
S2). We then examined the conformational flexibility of the
full-length XL complex by performing SEC-SAXS-MALS
experiments (Supplementary Figure S7D). Consistent with
Figure 4A, the major peak eluting from the gel filtration
column corresponded to the XL heterodimer, as judged
by molecular estimates from MALS and SAXS (Supple-
mentary Figure S7D, Table S2). The decrease of Rg val-
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Figure 4. Visualization of XL particles by electron microscopy reveals a dynamic domain arrangement. (A) SEC-MALS analysis shows that XRCC1 either
alone or in complex with full-length LigIII� elutes earlier than globular protein standards despite molar masses of ∼77 and ∼180 kDa, respectively. (B) The
XL peak seen in (A) is composed of a heterodimer. (C) The XL dimer was chemically crosslinked prior to negative-stain EM imaging. (D) 2D classification
reveals oligomeric and conformational heterogeneity in non-crosslinked XRCC1. (E) Particles belonging to non-XL 2D classes were removed from the
cross-linked XL dataset. (F) The final dataset contained uniformly-sized 2D classes of particles. 3D classification and subsequent refinement resulted in
two conformers of the XL complex. (G) The 3D EM maps are rotated to each display a linear protrusion from a larger area of density. The linear extension
potentially represents XRCC1 domains X1BR2 (PDB ID: 3PC8 chain A), X1BR1 (PDB ID: 2D8M) and the N-terminus (PDB ID: 3K77). The LigIII�
ZnF (PDB ID: 1UW0), three domain catalytic fragment (DBD, NTase and OBD, PDB ID: 3L2P) and L3BR (PDB ID: 3PC8 chain C) domains were
docked into the larger area of density of each conformer.
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ues determined for individual SAXS frames across the elu-
tion peak (Figure 5C) suggests XL conformational het-
erogeneity through transient interactions between multi-
ple XL domains. However, the Kratky plots revealed sig-
nificant compaction of the XL heterodimer relative to the
XRCC1 dimer (Figure 5A), consistent with the reduced het-
erogeneity the XL particles compared with XRCC1 par-
ticles seen by EM. To determine whether the compaction
extends beyond the interacting C-terminal BRCT domains
in the XL complex, we examined the protease-sensitivity
of labeled, adenylated LigIII. Notably, the labeled catalytic
fragment of LigIII was more resistant to proteolysis when
complexed with XRCC1 (Supplementary Figure S11), sug-
gesting that the BRCT–BRCT heterodimer interacts with
and influences the conformation of the LigIII catalytic
region.

To test how the EM conformers 1 and 2 (Figure 4G)
match the solution state, we compared models based on the
available atomic structures that do not include the linker re-
gions between domains to the SAXS curve. Without linker
regions that are missing from the atomic resolution struc-
tures, fits of the EM models were poor (χ2

conformer1 = 11.6
and χ2

conformer2 = 15.1, see Supplementary Figure S7E). To
determine whether this discrepancy was due to the flexibility
of the missing regions, these sections were built using MOD-
ELLER (61) and conformational sampling was applied us-
ing BILBOMD (65) to mimic the flexibility of the added re-
gions (Supplementary Figure S12). While the SAXS fit was
improved by including linker flexibility (χ2

conformer1 = 2.6
and χ2

conformer2 = 3.0), the remaining discrepancy between
theoretical and experimental SAXS curves in the low res-
olution range of SAXS (q 0.05–0.15 Å−1, see Figure 5C)
suggested larger conformational rearrangements of the XL
domains in solution. Closer inspection of the EM-derived
models showed that the N-terminal domain of XRCC1 and
the LigIII N-terminal ZnF domain are spatially separated
from the XL core (X1BR1, X1BR2, L3BR and LigIII cat-
alytic domains) (Figure 4G). Thus, we performed rigid body
modeling that included flexibility of the N-terminal do-
mains of XRCC1 and LigIII using EM conformers 1 and 2,
respectively as initial models. From approximately 10,000
conformers derived by conformational sampling (Supple-
mentary Figure S7F), a multistate model containing two
conformers was selected by MultiFOXS (68) (Figure 5D
and Supplementary Figure S12). Displacement of the N-
terminal domain of XRCC1 and the LigIII N-terminal ZnF
domain from their initial locations (Figure 5D and Supple-
mentary Figure S12) significantly improved the SAXS fit
(χ2

conformer1 = 1.6 and χ2
conformer2 = 1.7, Figure 5C) in the

low-resolution range, in accord with the flexibility of these
regions inferred by our EM studies and shown by others
(49,50) (Figure 5D and Supplementary Figure S12). No-
tably, the most dominant conformers in both conforma-
tional samplings (Figure 5D) adopted a similar arrange-
ment to the EM-derived conformers. Taken together, the
SAXS-derived model of full-length XL supports the do-
main arrangement predicted by EM in which the BRCT–
BRCT heterodimer is the stable core of the XL complex that
increases the compaction of the LigIII catalytic region and
links the flexible N-terminal regions of XRCC1 that are ac-

cessible for additional protein-protein interactions with the
flexible N-terminal nick sensing region of LigIII�.

DISCUSSION

Based on previous studies, both XRCC1 and LigIII�
are elongated proteins composed of some well-folded do-
mains connected by flexible, unstructured regions (2,49,63).
While there is atomic resolution structural information for
the well-folded domains (39,48,62,63,82,83), less is known
about the functional architecture of the full length proteins,
particularly the XL complex that plays a key role in coordi-
nating base excision and single strand break repair (84,85).
Accurate structural analyses of large and flexible complexes
can require combined approaches to assess both flexibility
(by SAXS), shape (by SAXS and EM) and detail (by X-
ray crystallography and NMR) (86,87). Here we integrated
results of crystallographic, EM and SAXS experiments for
LigIII� and XRCC1 with existing structural information
(39,48,62,63,82,83) to build a complete data-based model
of the highly flexible XL heterodimer that is anchored by a
unique BRCT–BRCT interaction (Figures 4 and 5).

XRCC1 and LigIII� BRCT domains are critical for
the stability and function of nuclear LigIII� (29,42,44).
Yet, XRCC1 has LigIII�-independent functions in nuclear
DNA repair (42,44,45). Furthermore, the essential func-
tion of LigIII� in mitochondrial DNA metabolism occurs
in the absence of XRCC1 and is not dependent upon its
C-terminal BRCT domain (21,23,47). In accord with pub-
lished studies concluding that the C-terminal BRCT do-
mains also homodimerize (48,49), we observed formation
of XRCC1 and LigIII� homodimers albeit to a lesser ex-
tent than XL heterodimers. Overall, our atomic resolution
structure of the human BRCT–BRCT heterodimer closely
resembles that formed by mouse X1BR2 with human L3BR
and supports and extends the notion that interactions with
the region N-terminal to X1BR2 contribute to the preferred
formation of hetero- versus homodimers (48). However,
differences between the human and mouse-human hybrid
structures including an increase in the tilt angle between
the X1BR2 with L3BR domains in the human structure ev-
idently reflect differences in the amino acids contributing to
the interaction interface. Residue substitutions confirmed
the key role of specific amino acids in the structurally-
defined interface. They furthermore highlighted the struc-
tural and functional asymmetry, in particular rotation of
L3BR �1 helix in the XL heterodimer relative to the cor-
responding �1 helix of X1BR2 in the homodimer (48), that
seems to favor heterodimer formation.

While the XL complex is flexible, it is significantly more
compact than either XRCC1 or LigIII� (Figure 5A). The
linker region between the X1BR1 and X1BR2 domains
is extensively phosphorylated by CK2, enhancing inter-
actions with PNKP and APTX via their FHA domains
(30,33,80,88). However, CK2 phosphorylation had no de-
tectable effect on XRCC1 conformation. Since the catalytic
region of LigIII undergoes a large conformational change
when it engages nicked DNA (50), we examined the effect
of complex formation with XRCC1 on the LigIII catalytic
region. Notably, it was much more resistant to proteolysis
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Figure 5. Increased XL compaction from comparison of EM and SAXS results. (A) Normalized Kratky plot of XRCC1 (magenta) in comparison with
XRCC1�N-p/L3BR (blue) and XL complex (red) revealed compaction of larger XL complexes. The SAXS profiles are representative of two independent
experiments. (B) Normalized P(r) functions obtained for experimental SAXS shown in panel A fitted to the theoretical P(r) functions (black) of atomistic
models of XRCC1 (Figure 2E) and the multistate model of XL complex derived from the EM conformer 1 shown in panel D. P(r) function of XRCC1�N-
p/L3BR complex reveal that the XRCC1�N has an elongated, flexible conformation, even when bound to L3BR domain. (C) Experimental (black) and
theoretical (colored as indicated) SAXS profiles for the two XL EM conformers with optimized conformations of the linker regions (red and magenta) and
optimized locations of the N-terminal domain of XRCC1 and the LigIII N-terminal ZnF domain (XRCC-N, cyan and ZnF, green). SAXS fits are shown
together with the fit residuals in the lower panel and χ2 values indicating goodness of fit. (D) The top weighted model from the multistate SAXS-model
of XL complex was modelled using EM conformer 1 (top) and conformer 2 (bottom) as initial model. Both conformers of multistate models are shown in
Supplementary Figure S12. Models are superimposed on to the 3D EM maps. Corresponding SAXS fits for the atomistic models are shown in panel C and
further shown as a theoretical P(r) functions in panel B. XRCC1 is constitutively phosphorylated by CK2 (30), and the phosphorylation site is indicated
by P within a green circle. Interacting regions of XRCC1 with partner proteins are indicated.
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within the XL heterodimer. Thus, the BRCT–BRCT het-
erodimer not only anchors these proteins but also presum-
ably initiates secondary interactions that reduce the flexi-
bility of the LigIII catalytic region, an effect that may con-
tribute to the ability of XRCC1 to stimulate ligation by and
maintain the steady state levels of LigIII� (29,42).

During SSBR, the stable heterodimer core of XL defined
here effectively tethers the flexible XRCC1 scaffold that me-
diates recruitment of LigIII�, as well as other XRCC1-
interacting proteins, including Pol�, PNKP and APTX
(12,13,15,16) to sites of DNA damage via an interaction
between X1BR1 and PARylated PARP1 (18,20,39) (Figure
5D). The N-terminal ZnF of LigIII� is part of a flexible SSB
sensing module that may facilitate location of SSBs in the
context of local high concentrations of poly(ADP-ribose)
(50,89,90). If the SSB is non-ligatable, we envision that the
flexibility of XRCC1 and LigIII� will enable dynamic sens-
ing and processing of the SSB termini by the LigIII� ZnF
and XRCC1-associated proteins within the XL complex,
culminating in the circularization of the LigIII� catalytic
fragment around a ligatable nick to complete repair (63).
Future structural and biochemical studies are needed to ad-
dress how the binding of other XRCC1 partner proteins im-
pact the flexibility of the XRCC1 scaffold and the repair
of base damage as well as both single- and double-strand
breaks. For example, in BRCA2-defective cells, there are
increased interactions between XRCC1 and both MRE11
and DNA polymerase theta that may contribute to the
observed genome rearrangements in BRCA-deficient can-
cers (91), so these structural results may inform ongo-
ing investigations of existing and novel chemotherapeutic
strategies.

Here, we have used crystal structures combined with neg-
ative stain EM and SAXS to obtain complementary insights
into the structure and conformational flexibility of an intact
highly dynamic protein complex that could not be obtained
by either X-ray crystallography or NMR alone. The com-
bined results show that accurate determination of XL struc-
tures must include its dynamic and functional flexibility as
was recently found for the DNA PK complex (92). Our in-
tegrative modeling from EM and SAXS plus atomic resolu-
tion domain structures revealed the functional compaction
of the XL complex that extended beyond the interacting C-
terminal BRCT–BRCT domains to the catalytic region of
LigIII�. The consensus models of the XL complex suggest
that the interconversions of the flexible N-terminal exten-
sions of LigIII� and XRCC1 facilitate functional interac-
tions with diverse protein partners during BER and strand
break repair.

DATA AVAILABILITY

Coordinates and structure factors have been deposited in
the PDB with accession codes 6WH1 for the XLBR-BR
complex and 6WH2 for X1BR2. The EM maps have been
deposited in the EMDB with accession codes 22130 and
22307 for EM conformer 1 and EM conformer 2, respec-
tively. SAXS data and atomistic models of XRCC1�N-p,
XRCC1, LigIII� and XL complex have been deposited in
the SASBDB with accession codes SASDJ52, SASDJ62,
SASDJ72 and SASDJ82.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

Mark Glover kindly provided us with pGEX-CK2� plas-
mid. Drs Leslie Hicks and Sophie Alvarez provided expert
mass spectrometry analysis of proteins at the Proteomics &
Mass Spectrometry Facility of the Donald Danforth Plant
Science Center (Saint Louis, MO).
Author contributions: M.H., T.E., J.M.P., I-K.K., J.A.T. and
A.E.T. designed the overall research. M-S.T., I-K.K, A.S.
and I.R. were responsible for protein expression and purifi-
cation; I-K.K, I.R. and A.S. performed the biochemistry
and mutagenesis studies, I-K.K., Y.P. and T.E., the X-ray
crystallography and analysis, M.H. the small angle X-ray
scattering and analysis and A.S. and J.M.P. the electron mi-
croscopy and analysis. The manuscript was written by I-
K.K., M.H., T.E., J.M.P., J.A.T. and A.E.T. with contribu-
tions from A.S. and I.R. All authors have given approval to
the final version of the manuscript.

FUNDING

National Institutes of Health (NIH) [R01 ES012512 to
A.E.T., R35 CA220430 to J.A.T., in part]; The Structural
Cell Biology of DNA Repair Program [P01 CA092584
to A.E.T., T.E., J.A.T.]; V Foundation V Scholar Grant
[V2018-25 to I.K.K.]; J.A.T. acknowledges the Cancer Pre-
vention Research Institute of Texas (CPRIT) [RP180813];
Robert A. Welch Chemistry Chair; National Science and
Engineering Research Council of Canada [RGPIN-2015-
05776 to J.M.P.]; SIBYLS beamline at the Advanced Light
Source was provided in part by the Offices of Science and Bi-
ological and Environmental Research, U.S. Department of
Energy through DOE BER Integrated Diffraction Analysis
Technologies (IDAT) program; NIGMS [P30 GM124169-
01 ALS-ENABLE]. Funding for open access charge: NIH.
Conflict of interest statement. None declared.

REFERENCES
1. Thompson,L.H., Brookman,K.W., Jones,N.J., Allen,S.A. and

Carrano,A.V. (1990) Molecular cloning of the human XRCC1 gene,
which corrects defective DNA strand break repair and sister
chromatid exchange. Mol. Cell. Biol., 10, 6160–6171.

2. Caldecott,K.W. (2019) XRCC1 protein; form and function. DNA
Repair (Amst.), 81, 102664.

3. Caldecott,K.W., McKeown,C.K., Tucker,J.D., Ljungquist,S. and
Thompson,L.H. (1994) An interaction between the mammalian
DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol., 14,
68–76.

4. Kukshal,V., Kim,I.K., Hura,G.L., Tomkinson,A.E., Tainer,J.A. and
Ellenberger,T. (2015) Human DNA ligase III bridges two DNA ends
to promote specific intermolecular DNA end joining. Nucleic. Acids.
Res., 43, 7021–7031.

5. Marsin,S., Vidal,A.E., Sossou,M., Menissier-de Murcia,J., Le
Page,F., Boiteux,S., de Murcia,G. and Radicella,J.P. (2003) Role of
XRCC1 in the coordination and stimulation of oxidative DNA
damage repair initiated by the DNA glycosylase hOGG1. J. Biol.
Chem., 278, 44068–44074.

6. Das,A., Wiederhold,L., Leppard,J.B., Kedar,P., Prasad,R., Wang,H.,
Boldogh,I., Karimi-Busheri,F., Weinfeld,M., Tomkinson,A.E. et al.
(2006) NEIL2-initiated, APE-independent repair of oxidized bases in

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/1/306/6039925 by W

ashington U
niversity School of M

edicine Library user on 27 February 2021

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaa1188#supplementary-data


Nucleic Acids Research, 2021, Vol. 49, No. 1 319

DNA: Evidence for a repair complex in human cells. DNA Repair
(Amst.), 5, 1439–1448.

7. Wiederhold,L., Leppard,J.B., Kedar,P., Karimi-Busheri,F.,
Rasouli-Nia,A., Weinfeld,M., Tomkinson,A.E., Izumi,T., Prasad,R.,
Wilson,S.H. et al. (2004) AP endonuclease-independent DNA base
excision repair in human cells. Mol. Cell, 15, 209–220.

8. Akbari,M., Solvang-Garten,K., Hanssen-Bauer,A., Lieske,N.V.,
Pettersen,H.S., Pettersen,G.K., Wilson,D.M. 3rd, Krokan,H.E. and
Otterlei,M. (2010) Direct interaction between XRCC1 and UNG2
facilitates rapid repair of uracil in DNA by XRCC1 complexes. DNA
Repair (Amst.), 9, 785–795.

9. Campalans,A., Marsin,S., Nakabeppu,Y., O’Connor,TR., Boiteux,S.
and Radicella,J.P. (2005) XRCC1 interactions with multiple DNA
glycosylases: a model for its recruitment to base excision repair. DNA
Repair (Amst.), 4, 826–835.

10. Steinacher,R., Barekati,Z., Botev,P., Kusnierczyk,A., Slupphaug,G.
and Schar,P. (2019) SUMOylation coordinates BERosome assembly
in active DNA demethylation during cell differentiation. EMBO J.,
38, e99242.

11. Vidal,A.E., Boiteux,S., Hickson,I.D. and Radicella,J.P. (2001)
XRCC1 coordinates the initial and late stages of DNA abasic site
repair through protein-protein interactions. EMBO J., 20, 6530–6539.

12. Kubota,Y., Nash,R.A., Klungland,A., Schar,P., Barnes,D.E. and
Lindahl,T. (1996) Reconstitution of DNA base excision-repair with
purified human proteins: interaction between DNA polymerase beta
and the XRCC1 protein. EMBO J., 15, 6662–6670.

13. Caldecott,K.W., Aoufouchi,S., Johnson,P. and Shall,S. (1996)
XRCC1 polypeptide interacts with DNA polymerase beta and
possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel
molecular ’nick-sensor’ in vitro. Nucleic Acids Res., 24, 4387–4394.

14. Mol,C.D., Izumi,T., Mitra,S. and Tainer,J.A. (2000) DNA-bound
structures and mutants reveal abasic DNA binding by APE1 and
DNA repair coordination [corrected]. Nature, 403, 451–456.

15. Whitehouse,C.J., Taylor,R.M., Thistlethwaite,A., Zhang,H.,
Karimi-Busheri,F., Lasko,D.D., Weinfeld,M. and Caldecott,K.W.
(2001) XRCC1 stimulates human polynucleotide kinase activity at
damaged DNA termini and accelerates DNA single-strand break
repair. Cell, 104, 107–117.

16. Date,H., Igarashi,S., Sano,Y., Takahashi,T., Takano,H., Tsuji,S.,
Nishizawa,M. and Onodera,O. (2004) The FHA domain of aprataxin
interacts with the C-terminal region of XRCC1. Biochem. Biophys.
Res. Commun., 325, 1279–1285.

17. Iles,N., Rulten,S., El-Khamisy,S.F. and Caldecott,K.W. (2007) APLF
(C2orf13) is a novel human protein involved in the cellular response
to chromosomal DNA strand breaks. Mol. Cell. Biol., 27, 3793–3803.

18. Masson,M., Niedergang,C., Schreiber,V., Muller,S., Menissier-de
Murcia,J. and de Murcia,G. (1998) XRCC1 is specifically associated
with poly(ADP-ribose) polymerase and negatively regulates its
activity following DNA damage. Mol. Cell. Biol., 18, 3563–3571.

19. Lan,L., Nakajima,S., Oohata,Y., Takao,M., Okano,S., Masutani,M.,
Wilson,S.H. and Yasui,A. (2004) In situ analysis of repair processes
for oxidative DNA damage in mammalian cells. Proc. Natl. Acad.
Sci. U.S.A., 101, 13738–13743.

20. Okano,S., Lan,L., Caldecott,K.W., Mori,T. and Yasui,A. (2003)
Spatial and temporal cellular responses to single-strand breaks in
human cells. Mol. Cell. Biol., 23, 3974–3981.

21. Gao,Y., Katyal,S., Lee,Y., Zhao,J., Rehg,J.E., Russell,H.R. and
McKinnon,P.J. (2011) DNA ligase III is critical for mtDNA integrity
but not Xrcc1-mediated nuclear DNA repair. Nature, 471, 240–244.

22. Katyal,S. and McKinnon,P.J. (2011) Disconnecting XRCC1 and
DNA ligase III. Cell Cycle, 10, 2269–2275.

23. Simsek,D., Furda,A., Gao,Y., Artus,J., Brunet,E.,
Hadjantonakis,A.K., Van Houten,B., Shuman,S., McKinnon,P.J. and
Jasin,M. (2011) Crucial role for DNA ligase III in mitochondria but
not in Xrcc1-dependent repair. Nature, 471, 245–248.

24. Frosina,G., Fortini,P., Rossi,O., Carrozzino,F., Raspaglio,G.,
Cox,L.S., Lane,D.P., Abbondandolo,A. and Dogliotti,E. (1996) Two
pathways for base excision repair in mammalian cells. J. Biol. Chem.,
271, 9573–9578.

25. Moser,J., Kool,H., Giakzidis,I., Caldecott,K., Mullenders,L.H. and
Fousteri,M.I. (2007) Sealing of chromosomal DNA nicks during
nucleotide excision repair requires XRCC1 and DNA ligase III alpha
in a cell-cycle-specific manner. Mol. Cell, 27, 311–323.

26. Simsek,D., Brunet,E., Wong,S.Y., Katyal,S., Gao,Y., McKinnon,P.J.,
Lou,J., Zhang,L., Li,J., Rebar,E.J. et al. (2011) DNA ligase III
promotes alternative nonhomologous end-joining during
chromosomal translocation formation. PLos Genet., 7, e1002080.

27. Liang,L., Deng,L., Nguyen,S.C., Zhao,X., Maulion,C.D., Shao,C.
and Tischfield,J.A. (2008) Human DNA ligases I and III, but not
ligase IV, are required for microhomology-mediated end joining of
DNA double-strand breaks. Nucleic Acids Res., 36, 3297–3310.

28. Parsons,J.L., Tait,P.S., Finch,D., Dianova,I.I., Allinson,S.L. and
Dianov,G.L. (2008) CHIP-mediated degradation and DNA
damage-dependent stabilization regulate base excision repair
proteins. Mol. Cell, 29, 477–487.

29. Caldecott,K.W., Tucker,J.D., Stanker,L.H. and Thompson,L.H.
(1995) Characterization of the XRCC1–DNA ligase III complex in
vitro and its absence from mutant hamster cells. Nucleic Acids Res.,
23, 4836–4843.

30. Loizou,J.I., El-Khamisy,S.F., Zlatanou,A., Moore,D.J., Chan,D.W.,
Qin,J., Sarno,S., Meggio,F., Pinna,L.A. and Caldecott,K.W. (2004)
The protein kinase CK2 facilitates repair of chromosomal DNA
single-strand breaks. Cell, 117, 17–28.

31. Mani,R.S., Fanta,M., Karimi-Busheri,F., Silver,E., Virgen,C.A.,
Caldecott,K.W., Cass,C.E. and Weinfeld,M. (2007) XRCC1
stimulates polynucleotide kinase by enhancing its damage
discrimination and displacement from DNA repair intermediates. J.
Biol. Chem., 282, 28004–28013.

32. Kanno,S., Kuzuoka,H., Sasao,S., Hong,Z., Lan,L., Nakajima,S. and
Yasui,A. (2007) A novel human AP endonuclease with conserved
zinc-finger-like motifs involved in DNA strand break responses.
EMBO J., 26, 2094–2103.

33. Luo,H., Chan,D.W., Yang,T., Rodriguez,M., Chen,B.P., Leng,M.,
Mu,J.J., Chen,D., Songyang,Z., Wang,Y. et al. (2004) A new
XRCC1-containing complex and its role in cellular survival of methyl
methanesulfonate treatment. Mol. Cell. Biol., 24, 8356–8365.

34. Dutta,A., Eckelmann,B., Adhikari,S., Ahmed,K.M., Sengupta,S.,
Pandey,A., Hegde,P.M., Tsai,M.S., Tainer,J.A., Weinfeld,M. et al.
(2017) Microhomology-mediated end joining is activated in irradiated
human cells due to phosphorylation-dependent formation of the
XRCC1 repair complex. Nucleic Acids Res., 45, 2585–2599.

35. Ahel,I., Rass,U., El-Khamisy,S.F., Katyal,S., Clements,P.M.,
McKinnon,P.J., Caldecott,K.W. and West,S.C. (2006) The
neurodegenerative disease protein aprataxin resolves abortive DNA
ligation intermediates. Nature, 443, 713–716.

36. Hoch,N.C., Hanzlikova,H., Rulten,S.L., Tetreault,M.,
Komulainen,E., Ju,L., Hornyak,P., Zeng,Z., Gittens,W., Rey,S.A.
et al. (2017) XRCC1 mutation is associated with PARP1
hyperactivation and cerebellar ataxia. Nature, 541, 87–91.

37. Shen,J., Gilmore,E.C., Marshall,C.A., Haddadin,M., Reynolds,J.J.,
Eyaid,W., Bodell,A., Barry,B., Gleason,D., Allen,K. et al. (2010)
Mutations in PNKP cause microcephaly, seizures and defects in
DNA repair. Nat. Genet., 42, 245–249.

38. Marintchev,A., Robertson,A., Dimitriadis,E.K., Prasad,R.,
Wilson,S.H. and Mullen,G.P. (2000) Domain specific interaction in
the XRCC1–DNA polymerase beta complex. Nucleic Acids Res., 28,
2049–2059.

39. Polo,L.M., Xu,Y., Hornyak,P., Garces,F., Zeng,Z., Hailstone,R.,
Matthews,S.J., Caldecott,K.W., Oliver,A.W. and Pearl,L.H. (2019)
Efficient single-strand break repair requires binding to both
poly(ADP-ribose) and DNA by the central BRCT domain of
XRCC1. Cell Rep., 26, 573–581.

40. Nash,R.A., Caldecott,K.W., Barnes,D.E. and Lindahl,T. (1997)
XRCC1 protein interacts with one of two distinct forms of DNA
ligase III. Biochemistry, 36, 5207–5211.

41. Mackey,Z.B., Ramos,W., Levin,D.S., Walter,C.A., McCarrey,J.R.
and Tomkinson,A.E. (1997) An alternative splicing event which
occurs in mouse pachytene spermatocytes generates a form of DNA
ligase III with distinct biochemical properties that may function in
meiotic recombination. Mol. Cell. Biol., 17, 989–998.

42. Taylor,R.M., Wickstead,B., Cronin,S. and Caldecott,K.W. (1998)
Role of a BRCT domain in the interaction of DNA ligase III-alpha
with the DNA repair protein XRCC1. Curr. Biol., 8, 877–880.

43. Moore,D.J., Taylor,R.M., Clements,P. and Caldecott,K.W. (2000)
Mutation of a BRCT domain selectively disrupts DNA single-strand
break repair in noncycling Chinese hamster ovary cells. Proc. Natl.
Acad. Sci. U.S.A., 97, 13649–13654.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/1/306/6039925 by W

ashington U
niversity School of M

edicine Library user on 27 February 2021



320 Nucleic Acids Research, 2021, Vol. 49, No. 1

44. Taylor,R.M., Moore,D.J., Whitehouse,J., Johnson,P. and
Caldecott,K.W. (2000) A cell cycle-specific requirement for the
XRCC1 BRCT II domain during mammalian DNA strand break
repair. Mol. Cell. Biol., 20, 735–740.

45. Taylor,R.M., Thistlethwaite,A. and Caldecott,K.W. (2002) Central
role for the XRCC1 BRCT I domain in mammalian DNA
single-strand break repair. Mol. Cell. Biol., 22, 2556–2563.

46. Lakshmipathy,U. and Campbell,C. (1999) The human DNA ligase
III gene encodes nuclear and mitochondrial proteins. Mol. Cell. Biol.,
19, 3869–3876.

47. Lakshmipathy,U. and Campbell,C. (2000) Mitochondrial DNA
ligase III function is independent of Xrcc1. Nucleic. Acids. Res., 28,
3880–3886.

48. Cuneo,M.J., Gabel,S.A., Krahn,J.M., Ricker,M.A. and London,R.E.
(2011) The structural basis for partitioning of the XRCC1/DNA
ligase III-{alpha} BRCT-mediated dimer complexes. Nucleic Acids
Res., 39, 7816–7827.

49. Mani,R.S., Karimi-Busheri,F., Fanta,M., Caldecott,K.W., Cass,C.E.
and Weinfeld,M. (2004) Biophysical characterization of human
XRCC1 and its binding to damaged and undamaged DNA.
Biochemistry, 43, 16505–16514.

50. Cotner-Gohara,E., Kim,I.K., Tomkinson,A.E. and Ellenberger,T.
(2008) Two DNA-binding and nick recognition modules in human
DNA ligase III. J. Biol. Chem., 283, 10764–10772.

51. Van Duyne,G.D., Standaert,R.F., Karplus,P.A., Schreiber,S.L. and
Clardy,J. (1993) Atomic structures of the human immunophilin
FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol., 229,
105–124.

52. Della-Maria,J., Hegde,M.L., McNeill,D.R., Matsumoto,Y.,
Tsai,M.S., Ellenberger,T., Wilson,D.M. 3rd, Mitra,S. and
Tomkinson,A.E. (2012) The interaction between polynucleotide
kinase phosphatase and the DNA repair protein XRCC1 is critical
for repair of DNA alkylation damage and stable association at DNA
damage sites. J. Biol. Chem., 287, 39233–39244.

53. Della-Maria,J., Zhou,Y., Tsai,M.S., Kuhnlein,J., Carney,J.P.,
Paull,T.T. and Tomkinson,A.E. (2011) Human Mre11/human
Rad50/Nbs1 and DNA ligase III{alpha}/XRCC1 protein complexes
act together in an alternative nonhomologous end joining pathway. J.
Biol. Chem., 286, 33845–33853.

54. Kang,J.G., Paget,M.S., Seok,Y.J., Hahn,M.Y., Bae,J.B., Hahn,J.S.,
Kleanthous,C., Buttner,M.J. and Roe,J.H. (1999) RsrA, an
anti-sigma factor regulated by redox change. EMBO J., 18,
4292–4298.

55. Hura,G.L., Menon,A.L., Hammel,M., Rambo,R.P., Poole,F.L. 2nd,
Tsutakawa,S.E., Jenney,F.E. Jr., Classen,S., Frankel,K.A.,
Hopkins,R.C. et al. (2009) Robust, high-throughput solution
structural analyses by small angle X-ray scattering (SAXS). Nat.
Methods, 6, 606–612.

56. Classen,S., Hura,G.L., Holton,J.M., Rambo,R.P., Rodic,I.,
McGuire,P.J., Dyer,K., Hammel,M., Meigs,G., Frankel,K.A. et al.
(2013) Implementation and performance of SIBYLS: a dual
endstation small-angle X-ray scattering and macromolecular
crystallography beamline at the advanced light source. J. Appl.
Crystallogr., 46, 1–13.

57. Knott,G.J., Cress,B.F., Liu,J.J., Thornton,B.W., Lew,R.J.,
Al-Shayeb,B., Rosenberg,D.J., Hammel,M., Adler,B.A., Lobba,M.J.
et al. (2019) Structural basis for AcrVA4 inhibition of specific
CRISPR-Cas12a. Elife, 8 e49110.

58. Guinier,A. and Fournet,F. (1955) In: Small Angle Scattering of
X-rays. Wiley Interscience, NY.

59. Rambo,R.P. and Tainer,J.A. (2013) Accurate assessment of mass,
models and resolution by small-angle scattering. Nature, 496,
477–481.

60. Dyer,K.N., Hammel,M., Rambo,R.P., Tsutakawa,S.E., Rodic,I.,
Classen,S., Tainer,J.A. and Hura,G.L. (2014) High-throughput SAXS
for the characterization of biomolecules in solution: a practical
approach. Methods Mol. Biol., 1091, 245–258.

61. Sali,A. and Blundell,T.L. (1993) Comparative protein modelling by
satisfaction of spatial restraints. J. Mol. Biol., 234, 779–815.

62. Marintchev,A., Mullen,M.A., Maciejewski,M.W., Pan,B.,
Gryk,M.R. and Mullen,G.P. (1999) Solution structure of the
single-strand break repair protein XRCC1 N-terminal domain. Nat.
Struct. Biol., 6, 884–893.

63. Cotner-Gohara,E., Kim,I.K., Hammel,M., Tainer,J.A.,
Tomkinson,A.E. and Ellenberger,T. (2010) Human DNA ligase III
recognizes DNA ends by dynamic switching between two
DNA-bound states. Biochemistry, 49, 6165–6176.

64. Langelier,M.F., Planck,J.L., Roy,S. and Pascal,J.M. (2011) Crystal
structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers
bound to DNA: structural and functional insights into
DNA-dependent PARP-1 activity. J. Biol. Chem., 286, 10690–10701.

65. Pelikan,M., Hura,G.L. and Hammel,M. (2009) Structure and
flexibility within proteins as identified through small angle X-ray
scattering. Gen. Physiol. Biophys., 28, 174–189.

66. Schneidman-Duhovny,D., Hammel,M. and Sali,A. (2010) FoXS: a
web server for rapid computation and fitting of SAXS profiles.
Nucleic Acids Res., 38, W540–544.

67. Schneidman-Duhovny,D., Hammel,M., Tainer,J.A. and Sali,A.
(2013) Accurate SAXS profile computation and its assessment by
contrast variation experiments. Biophys. J., 105, 962–974.

68. Schneidman-Duhovny,D., Hammel,M., Tainer,J.A. and Sali,A.
(2016) FoXS, FoXSDock and MultiFoXS: Single-state and
multi-state structural modeling of proteins and their complexes based
on SAXS profiles. Nucleic Acids Res., 44, W424–429.

69. Mastronarde,D.N. (2005) Automated electron microscope
tomography using robust prediction of specimen movements. J.
Struct. Biol., 152, 36–51.

70. Marabini,R., Ludtke,S.J., Murray,S.C., Chiu,W., de la
Rosa-Trevin,J.M., Patwardhan,A., Heymann,J.B. and Carazo,J.M.
(2016) The Electron Microscopy eXchange (EMX) initiative. J.
Struct. Biol., 194, 156–163.

71. Kimanius,D., Forsberg,B.O., Scheres,S.H. and Lindahl,E. (2016)
Accelerated cryo-EM structure determination with parallelisation
using GPUs in RELION-2. Elife, 5, e18722.

72. Sorzano,C.O., Martin-Ramos,A., Prieto,F., Melero,R.,
Martin-Benito,J., Jonic,S., Navas-Calvente,J., Vargas,J., Oton,J.,
Abrishami,V. et al. (2016) Local analysis of strains and rotations for
macromolecular electron microscopy maps. J. Struct. Biol., 195,
123–128.

73. Punjani,A., Rubinstein,J.L., Fleet,D.J. and Brubaker,M.A. (2017)
cryoSPARC: algorithms for rapid unsupervised cryo-EM structure
determination. Nat. Methods, 14, 290–296.

74. Scheres,S.H. (2012) RELION: implementation of a Bayesian
approach to cryo-EM structure determination. J. Struct. Biol., 180,
519–530.

75. Scheres,S.H. and Chen,S. (2012) Prevention of overfitting in cryo-EM
structure determination. Nat. Methods, 9, 853–854.

76. Pettersen,E.F., Goddard,T.D., Huang,C.C., Couch,G.S.,
Greenblatt,D.M., Meng,E.C. and Ferrin,T.E. (2004) UCSF
Chimera–a visualization system for exploratory research and
analysis. J. Comput. Chem., 25, 1605–1612.

77. Putnam,C.D., Hammel,M., Hura,G.L. and Tainer,J.A. (2007) X-ray
solution scattering (SAXS) combined with crystallography and
computation: defining accurate macromolecular structures,
conformations and assemblies in solution. Q. Rev. Biophys., 40,
191–285.

78. Rambo,R.P. and Tainer,J.A. (2011) Characterizing flexible and
intrinsically unstructured biological macromolecules by SAS using
the Porod-Debye law. Biopolymers, 95, 559–571.

79. Parsons,J.L., Dianova,I.I., Finch,D., Tait,P.S., Strom,C.E.,
Helleday,T. and Dianov,G.L. (2010) XRCC1 phosphorylation by
CK2 is required for its stability and efficient DNA repair. DNA
Repair (Amst.), 9, 835–841.

80. Kim,I.K., Stegeman,R.A., Brosey,C.A. and Ellenberger,T. (2015) A
quantitative assay reveals ligand specificity of the DNA scaffold
repair protein XRCC1 and efficient disassembly of complexes of
XRCC1 and the poly(ADP-ribose) polymerase 1 by
poly(ADP-ribose) glycohydrolase. J. Biol. Chem., 290, 3775–3783.

81. Pascal,J.M., Tsodikov,O.V., Hura,G.L., Song,W., Cotner,E.A.,
Classen,S., Tomkinson,A.E., Tainer,J.A. and Ellenberger,T. (2006) A
flexible interface between DNA ligase and PCNA supports
conformational switching and efficient ligation of DNA. Mol. Cell,
24, 279–291.

82. Zhang,X., Morera,S., Bates,P.A., Whitehead,P.C., Coffer,A.I.,
Hainbucher,K., Nash,R.A., Sternberg,M.J., Lindahl,T. and
Freemont,P.S. (1998) Structure of an XRCC1 BRCT domain: a new
protein-protein interaction module. EMBO J., 17, 6404–6411.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/1/306/6039925 by W

ashington U
niversity School of M

edicine Library user on 27 February 2021



Nucleic Acids Research, 2021, Vol. 49, No. 1 321

83. Kulcyzk,A.W., Yang,J.-C. and Neuhas,D. (2004) Solution structure
and DNA binding of the zinc-finger domain from DNA ligase III�. J.
Mol. Biol., 341, 723–738.

84. Caldecott,K.W. (2008) Single-strand break repair and genetic disease.
Nat. Rev. Genet., 9, 619–631.

85. Tomkinson,A.E., Chen,L., Dong,Z., Leppard,J.B., Levin,D.S.,
Mackey,Z.B. and Motycka,T.A. (2001) Completion of base excision
repair by mammalian DNA ligases. Prog. Nucleic Acid Res. Mol.
Biol., 68, 151–164.

86. Rambo,R.P. and Tainer,J.A. (2010) Bridging the solution divide:
comprehensive structural analyses of dynamic RNA, DNA, and
protein assemblies by small-angle X-ray scattering. Curr. Opin. Struct.
Biol., 20, 128–137.

87. Brosey,C.A. and Tainer,J.A. (2019) Evolving SAXS versatility:
solution X-ray scattering for macromolecular architecture, functional
landscapes, and integrative structural biology. Curr. Opin. Struct.
Biol., 58, 197–213.

88. Bernstein,N.K., Hammel,M., Mani,R.S., Weinfeld,M., Pelikan,M.,
Tainer,J.A. and Glover,J.N. (2009) Mechanism of DNA substrate
recognition by the mammalian DNA repair enzyme, Polynucleotide
Kinase. Nucleic Acids Res., 37, 6161–6173.

89. Leppard,J.B., Dong,Z., Mackey,Z.B. and Tomkinson,A.E. (2003)
Physical and functional interaction between DNA ligase IIIalpha and
poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair.
Mol. Cell. Biol., 23, 5919–5927.

90. Mackey,Z.B., Niedergang,C., Murcia,J.M., Leppard,J., Au,K.,
Chen,J., de Murcia,G. and Tomkinson,A.E. (1999) DNA ligase III is
recruited to DNA strand breaks by a zinc finger motif homologous to
that of poly(ADP-ribose) polymerase. Identification of two
functionally distinct DNA binding regions within DNA ligase III. J.
Biol. Chem., 274, 21679–21687.

91. Eckelmann,B.J., Bacolla,A., Wang,H., Ye,Z., Guerrero,E.N.,
Jiang,W., El-Zein,R., Hegde,M.L., Tomkinson,A.E., Tainer,J.A. et al.
(2020) XRCC1 promotes replication restart, nascent fork degradation
and mutagenic DNA repair in BRCA2-deficient cells. NAR Cancer, 2,
zcaa013.

92. Hammel,M., Rosenberg,D.J., Bierma,J., Hura,G.L., Thapar,R.,
Lees-Miller,S.P. and Tainer,J.A. (2020) Visualizing functional
dynamicity in the DNA-dependent protein kinase holoenzyme
DNA-PK complex by integrating SAXS with cryo-EM. Prog.
Biophys. Mol. Biol., S0079-6107, 30091–30092.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/1/306/6039925 by W

ashington U
niversity School of M

edicine Library user on 27 February 2021


	An atypical BRCT-BRCT interaction with the XRCC1 scaffold protein compacts human DNA ligase IIIα within a flexible DNA repair complex
	Authors

	tmp.1614446835.pdf.eil7d

