559 research outputs found

    Health-care organization for the management and surveillance of SARS-CoV-2 infection in children during pandemic in Campania region, Italy

    Get PDF
    Background: In comparison with adults, severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection in children has a milder course. The management of children with suspected or confirmed coronavirus disease (COVID-19) needs to be appropriately targeted. Methods: We designed a hub-and-spoke system to provide healthcare indications based on the use of telemedicine and stringent admission criteria, coordinate local stakeholders and disseminate information. Result: Between March 24th and September 24th 2020, the Hub Centre managed a total of 208 children (52% males, median age, 5.2, IQR 2–9.6 years) with suspected or confirmed COVID-19. Among them, 174 were managed in cooperation with family pediatricians and 34 with hospital-based physicians. One hundred-four (50%) received a final diagnosis of SARS-CoV-2 infection. Application of stringent criteria for hospital admission based on clinical conditions, risk factors and respect of biocontainment measures, allowed to manage the majority of cases (74, 71.1%) through telemedicine. Thirty children (28%) were hospitalized (median length 10 days, IQR 5–19 days), mainly due to the presence of persistent fever, mild respiratory distress or co-infection occurring in infant or children with underlying conditions. However, the reasons for admission slightly changed over time. Conclusion: An hub-and-spoke system is effective in coordinate territorial health-care structures involved in management paediatric COVID-19 cases through telemedicine and the definition of stringent hospital admission criteria. The management of children with COVID-19 should be based on clinical conditions, assessed on a case-by-case critical evaluation, as well as on isolation measures, but may vary according to local epidemiological changes

    6D physical interaction with a fully actuated aerial robot

    Get PDF
    This paper presents the design, control, and experimental validation of a novel fully-actuated aerial robot for physically interactive tasks, named Tilt-Hex. We show how the Tilt-Hex, a tilted-propeller hexarotor is able to control the full pose (position and orientation independently) using a geometric control, and to exert a full-wrench (force and torque independently) with a rigidly attached end-effector using an admittance control paradigm. An outer loop control governs the desired admittance behavior and an inner loop based on geometric control ensures pose tracking. The interaction forces are estimated by a momentum based observer. Control and observation are made possible by a precise control and measurement of the speed of each propeller. An extensive experimental campaign shows that the Tilt-Hex is able to outperform the classical underactuated multi-rotors in terms of stability, accuracy and dexterity and represent one of the best choice at date for tasks requiring aerial physical interaction

    Set-based Inverse Kinematics Control of an Anthropomorphic Dual Arm Aerial Manipulator

    Get PDF
    The paper presents a multiple task-priority inverse kinematics algorithm for a dual-arm aerial manipulator. Both tasks defined as equality constraints and inequality constraints are handled by means of a singularity robust method based on the Null-Space based Behavioral control. The proposed schema is constituted by the inverse kinematics control, that receives the desired behavior of the system and outputs the reference values for the motion variables, i.e. the UAV pose and the arm joints position, and a motion control, that computes the vehicle thrusts and the joint torques. The method has been experimentally validated on a system composed by an underactuated aerial hexarotor vehicle equipped with two lightweight 4-DOF manipulators, involved in operations requiring the coordination of the two arms and the vehicle

    On the Schroedinger Representation for a Scalar Field on Curved Spacetime

    Get PDF
    It is generally known that linear (free) field theories are one of the few QFT that are exactly soluble. In the Schroedinger functional description of a scalar field on flat Minkowski spacetime and for flat embeddings, it is known that the usual Fock representation is described by a Gaussian measure. In this paper, arbitrary globally hyperbolic space-times and embeddings of the Cauchy surface are considered. The classical structures relevant for quantization are used for constructing the Schroedinger representation in the general case. It is shown that in this case, the measure is also Gaussian. Possible implications for the program of canonical quantization of midisuperspace models are pointed out.Comment: 11 pages, Revtex, no figure

    Weinberg propagator of a free massive particle with an arbitrary spin from the BFV-BRST path integral

    Full text link
    The transition amplitude is obtained for a free massive particle of arbitrary spin by calculating the path integral in the index-spinor formulation within the BFV-BRST approach. None renormalizations of the path integral measure were applied. The calculation has given the Weinberg propagator written in the index-free form with the use of index spinor. The choice of boundary conditions on the index spinor determines holomorphic or antiholomorphic representation for the canonical description of particle/antiparticle spin.Comment: 31 pages, Latex, version published in Class. Quantum Gra

    Bilateral Chilblain-like Lesions of the Toes Characterized by Microvascular Remodeling in Adolescents During the COVID-19 Pandemic.

    Get PDF
    Importance: Chilblain-like lesions have been one of the most frequently described cutaneous manifestations during the COVID-19 pandemic. Their etiopathogenesis, including the role of SARS-CoV-2, remains elusive. Objective: To examine the association of chilblain-like lesions with SARS-CoV-2 infection. Design, setting, and participants: This prospective case series enrolled 17 adolescents who presented with chilblain-like lesions from April 1 to June 30, 2020, at a tertiary referral academic hospital in Italy. Main outcomes and measures: Macroscopic (clinical and dermoscopic) and microscopic (histopathologic) analysis contributed to a thorough understanding of the lesions. Nasopharyngeal swab, serologic testing, and in situ hybridization of the skin biopsy specimens were performed to test for SARS-CoV-2 infection. Laboratory tests explored signs of systemic inflammation or thrombophilia. Structural changes in peripheral microcirculation were investigated by capillaroscopy. Results: Of the 17 adolescents (9 [52.9%] male; median [interquartile range] age, 13.2 [12.5-14.3] years) enrolled during the first wave of the COVID-19 pandemic, 16 (94.1%) had bilaterally localized distal erythematous or cyanotic lesions. A triad of red dots (16 [100%]), white rosettes (11 [68.8%]), and white streaks (10 [62.5%]) characterized the dermoscopic picture. Histologic analysis revealed a remodeling of the dermal blood vessels with a lobular arrangement, wall thickening, and a mild perivascular lymphocytic infiltrate. SARS-CoV-2 infection was excluded by molecular and serologic testing. In situ hybridization did not highlight the viral genome in the lesions. Conclusions and relevance: This study delineated the clinical, histologic, and laboratory features of chilblain-like lesions that emerged during the COVID-19 pandemic, and its findings do not support their association with SARS-CoV-2 infection. The lesions occurred in otherwise healthy adolescents, had a long but benign course to self-resolution, and were characterized by a microvascular remodeling with perivascular lymphocytic infiltrate but no other signs of vasculitis. These results suggest that chilblain-like lesions do not imply a concomitant SARS-CoV-2 infection. Ongoing studies will help clarify the etiopathogenic mechanisms

    Glufosinate constrains synchronous and metachronous metastasis by promoting anti-tumor macrophages

    Get PDF
    Abstract Glutamine synthetase (GS) generates glutamine from glutamate and controls the release of inflammatory mediators. In macrophages, GS activity, driven by IL10, associates to the acquisition of M2‐like functions. Conditional deletion of GS in macrophages inhibits metastasis by boosting the formation of anti‐tumor, M1‐like, tumor‐associated macrophages (TAMs). From this basis, we evaluated the pharmacological potential of GS inhibitors in targeting metastasis, identifying glufosinate as a specific human GS inhibitor. Glufosinate was tested in both cultured macrophages and on mice bearing metastatic lung, skin and breast cancer. We found that glufosinate rewires macrophages toward an M1‐like phenotype both at the primary tumor and metastatic site, countering immunosuppression and promoting vessel sprouting. This was also accompanied to a reduction in cancer cell intravasation and extravasation, leading to synchronous and metachronous metastasis growth inhibition, but no effects on primary tumor growth. Glufosinate treatment was well‐tolerated, without liver and brain toxicity, nor hematopoietic defects. These results identify GS as a druggable enzyme to rewire macrophage functions and highlight the potential of targeting metabolic checkpoints in macrophages to treat cancer metastasis

    Degradation versus self-assembly of block copolymer micelles

    Full text link
    The stability of micelles self-assembled from block copolymers can be altered by the degradation of the blocks. Slow degradation shifts the equilibrium size distribution of block copolymer micelles and change their properties. Quasi-equilibrium scaling theory shows that the degradation of hydrophobic blocks in the core of micelles destabilize the micelles reducing their size, while the degradation of hydrophilic blocks forming coronas of micelles favors larger micelles and may, at certain conditions, induce the formation of micelles from individual chains.Comment: Published in Langmuir http://pubs.acs.org/doi/pdf/10.1021/la204625
    • 

    corecore