117 research outputs found

    Introduction

    Get PDF

    Characterization of psychotic experiences in adolescence using the Specific Psychotic Experiences Questionnaire (SPEQ): findings from a study of 5000 16-year-old twins

    Get PDF
    We aimed to characterize multiple psychotic experiences, each assessed on a spectrum of severity (ie, quantitatively), in a general population sample of adolescents. Over five thousand 16-year-old twins and their parents completed the newly devised Specific Psychotic Experiences Questionnaire (SPEQ); a subsample repeated it approximately 9 months later. SPEQ was investigated in terms of factor structure, intersubscale correlations, frequency of endorsement and reported distress, reliability and validity, associations with traits of anxiety, depression and personality, and sex differences. Principal component analysis revealed a 6-component solution: paranoia, hallucinations, cognitive disorganization, grandiosity, anhedonia, and parent-rated negative symptoms. These components formed the basis of 6 subscales. Correlations between different experiences were low to moderate. All SPEQ subscales, except Grandiosity, correlated significantly with traits of anxiety, depression, and neuroticism. Scales showed good internal consistency, test-retest reliability, and convergent validity. Girls endorsed more paranoia, hallucinations, and cognitive disorganization; boys reported more grandiosity and anhedonia and had more parent-rated negative symptoms. As in adults at high risk for psychosis and with psychotic disorders, psychotic experiences in adolescents are characterized by multiple components. The study of psychotic experiences as distinct dimensional quantitative traits is likely to prove an important strategy for future research, and the SPEQ is a self- and parent-report questionnaire battery that embodies this approach

    Biological and psychosocial risk factors for psychotic major depression

    Get PDF
    AIMS: Few studies have investigated risk factors for psychotic major depression (PMD). We aimed to investigate the biological and psychosocial risk factors associated with PMD compared with other psychotic disorders. METHODS: Based on the aetiology and ethnicity in schizophrenia and other psychoses (ÆSOP) study, we used a case-control study to identify and recruit, at baseline and 10-year follow-up, all first episode cases of psychosis, presenting for the first time to specialist mental health services in defined catchment areas in the UK. Population-based controls were recruited from the same areas. Data were collected on: sociodemographics; social isolation; childhood adversity; life events; minor physical anomalies; and neurological soft signs. RESULTS: Living alone (aOR = 2.26, CI = 1.21-4.23), basic level qualification (aOR = 2.89, CI = 1.08-7.74), being unemployed (aOR = 2.12, CI = 1.13-3.96), having contact with friends less than monthly (aOR = 4.24, CI = 1.62-11.14), having no close confidants (aOR = 4.71, CI = 2.08-10.68), having experienced childhood adversity (aOR = 2.57, CI = 1.02-6.44), family history of mental illness (aOR = 10.68, CI = 5.06-22.52), family history of psychosis (aOR = 12.85, CI = 5.24-31.51), and having more neurological soft signs (aOR = 1.15, CI = 1.07-1.24) were all associated with a follow-up diagnosis of PMD and schizophrenia. Few variables associated with PMD were also associated with a diagnosis of bipolar disorder. Minor physical anomalies were associated with a follow-up diagnosis of schizophrenia and bipolar disorder, but not PMD. CONCLUSIONS: Risk factors associated with PMD appear to overlap with those for schizophrenia, but less so for bipolar disorder. Future work on the differential aetiology of PMD, from other psychoses is needed to find the 'specifier' between PMD and other psychoses. Future research on aetiology in PMD, and perhaps other psychoses, should account for diagnostic change.status: publishe

    Antipsychotic treatment resistance in first-episode psychosis: prevalence, subtypes and predictors

    Get PDF
    Background: We examined longitudinally the course and predictors of treatment resistance in a large cohort of first-episode psychosis (FEP) patients from initiation of antipsychotic treatment. We hypothesized that antipsychotic treatment resistance is: (a) present at illness onset; and (b) differentially associated with clinical and demographic factors. Method: The study sample comprised 323 FEP patients who were studied at first contact and at 10-year follow-up. We collated clinical information on severity of symptoms, antipsychotic medication and treatment adherence during the follow-up period to determine the presence, course and predictors of treatment resistance. Results: From the 23% of the patients, who were treatment resistant, 84% were treatment resistant from illness onset. Multivariable regression analysis revealed that diagnosis of schizophrenia, negative symptoms, younger age at onset, and longer duration of untreated psychosis predicted treatment resistance from illness onset. Conclusions: The striking majority of treatment-resistant patients do not respond to first-line antipsychotic treatment even at time of FEP. Clinicians must be alert to this subgroup of patients and consider clozapine treatment as early as possible during the first presentation of psychosis

    Cognitive performance at first episode of psychosis and the relationship with future treatment resistance: Evidence from an international prospective cohort study

    Get PDF
    Background: Antipsychotic treatment resistance affects up to a third of individuals with schizophrenia, with recent research finding systematic biological differences between antipsychotic resistant and responsive patients. Our aim was to determine whether cognitive impairment at first episode significantly differs between future antipsychotic responders and resistant cases. Methods: Analysis of data from seven international cohorts of first-episode psychosis (FEP) with cognitive data at baseline (N = 683) and follow-up data on antipsychotic treatment response: 605 treatment responsive and 78 treatment resistant cases. Cognitive measures were grouped into seven cognitive domains based on the preexisting literature. We ran multiple imputation for missing data and used logistic regression to test for associations between cognitive performance at FEP and treatment resistant status at follow-up. Results: On average patients who were future classified as treatment resistant reported poorer performance across most cognitive domains at baseline. Univariate logistic regressions showed that antipsychotic treatment resistance cases had significantly poorer IQ/general cognitive functioning at FEP (OR = 0.70, p = .003). These findings remained significant after adjusting for additional variables in multivariable analyses (OR = 0.76, p = .049). Conclusions: Although replication in larger studies is required, it appears that deficits in IQ/general cognitive functioning at first episode are associated with future treatment resistance. Cognitive variables may be able to provide further insight into neurodevelopmental factors associated with treatment resistance or act as early predictors of treatment resistance, which could allow prompt identification of refractory illness and timely interventions.Funding: This work was supported by a Stratified Medicine Programme grant to J.H.M from the Medical Research Council (grant number MR/L011794/1 which funded the research and supported S.E.S., A.F.P., R.M.M., J.T.R.W. & J.H.M.) E.M’s PhD is funded by the MRC-doctoral training partnership studentship in Biomedical Sciences at King’s College London. J.H.M, E.K, R.M.M are part funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. A.P.K. is funded by the NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. O.A. is further funded by an NIHR Post-Doctoral Fellowship (PDF2018-11-ST2-020). The views expressed are those of the authors and not necessarily those of the NHS, the MRC, the NIHR or the Department of Health. E.M.J. is supported by the UCL/UCLH Biomedical Research Centre. The AESOP (London, UK) cohort was funded by the UK Medical Research Council (Ref: G0500817). The Bologna (Italy) cohort was funded by the European Community’s Seventh Framework Program under grant agreement (agreement No. HEALTH-F2-2010–241909, Project EU-GEI). The GAP (London, UK) cohort was funded by the UK National Institute of Health Research (NIHR) Specialist Biomedical Research Centre for Mental Health, South London and Maudsley NHS Mental Health Foundation Trust (SLaM) and the Institute of Psychiatry, Psychology, and Neuroscience at King’s College London; Psychiatry Research Trust; Maudsley Charity Research Fund; and the European Community’s Seventh Framework Program grant (agreement No. HEALTH-F2-2009-241909, Project EU-GEI). The Oslo (Norway) cohort was funded by the Stiftelsen KG Jebsen, Research Council of Norway (#223273, under the Centers of Excellence funding scheme, and #300309, #283798) and the South-Eastern Norway Regional Health Authority (#2006233, #2006258, #2011085, #2014102, #2015088, #2017-112). The Paris (France) cohort was funded by European Community’s Seventh Framework Program grant (agreement No. HEALTHF2-2010–241909, Project EU-GEI). The Santander (Spain) cohort was funded by the following grants (to B.C.F): Instituto de Salud Carlos III, FIS 00/3095, PI020499, PI050427, PI060507, Plan Nacional de Drogas Research Grant 2005-Orden sco/3246/2004, and SENY Fundatio Research Grant CI 2005-0308007, Fundacion Marques de Valdecilla A/02/07 and API07/011. SAF2016-76046-R and SAF2013-46292-R (MINECO and FEDER). The West London (UK) cohort was funded The Wellcome Trust (Grant Numbers: 042025; 052247; 064607)

    Clinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium

    Get PDF
    Introduction Our aim was to, firstly, identify characteristics at first-episode of psychosis that are associated with later antipsychotic treatment resistance (TR) and, secondly, to develop a parsimonious prediction model for TR. Methods We combined data from ten prospective, first-episode psychosis cohorts from across Europe and categorised patients as TR or non-treatment resistant (NTR) after a mean follow up of 4.18 years (s.d. = 3.20) for secondary data analysis. We identified a list of potential predictors from clinical and demographic data recorded at first-episode. These potential predictors were entered in two models: a multivariable logistic regression to identify which were independently associated with TR and a penalised logistic regression, which performed variable selection, to produce a parsimonious prediction model. This model was internally validated using a 5-fold, 50-repeat cross-validation optimism-correction. Results Our sample consisted of N = 2216 participants of which 385 (17 %) developed TR. Younger age of psychosis onset and fewer years in education were independently associated with increased odds of developing TR. The prediction model selected 7 out of 17 variables that, when combined, could quantify the risk of being TR better than chance. These included age of onset, years in education, gender, BMI, relationship status, alcohol use, and positive symptoms. The optimism-corrected area under the curve was 0.59 (accuracy = 64 %, sensitivity = 48 %, and specificity = 76 %). Implications Our findings show that treatment resistance can be predicted, at first-episode of psychosis. Pending a model update and external validation, we demonstrate the potential value of prediction models for TR.Funding: This work was supported by a Stratified Medicine Programme grant to JHM from the Medical Research Council (grant number MR/L011794/1 which funded the research and supported S.E.S., D.A., A.F.P, L.K., R.M.M., D.S., J.T.R.W, & J.H.M.); funding from the National Institute for Health Research Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust and King's College London to D.A. and D.S; and funding from the Collaboration for Leadership in Applied Health Research and Care (CLAHRC) South London at King's College Hospital National Health Service Foundation Trust to S.E.S. The views expressed are those of the author(s) and not necessarily those of the Medical Research Council, National Health Service, the National Institute for Health Research, or the Department of Health. The AESOP (London, UK) cohort was funded by the UK Medical Research Council (Ref: G0500817). The Belfast (UK) cohort was funded by the Research and Development Office of Northern Ireland. The Bologna (Italy) cohort was funded by the European Community's Seventh Framework Program under grant agreement (agreement No.HEALTH-F2-2010–241909, Project EU-GEI). The GAP (London, UK) cohort was funded by the UK National Institute of Health Research(NIHR) Specialist Biomedical Research Centre for Mental Health, South London and Maudsley NHS Mental Health Foundation Trust (SLaM) and the Institute of Psychiatry, Psychology, and Neuroscience at King's College London; Psychiatry Research Trust; Maudsley Charity Research Fund; and the European Community's Seventh Framework Program grant (agreement No. HEALTH-F2-2009-241909, Project EU-GEI). The Lausanne (Switzerland) cohort was funded by the Swiss National Science Foundation (no. 320030_135736/1 to P.C. and K.Q.D., no 320030-120686, 324730-144064 and 320030-173211 to C.B.E and P.C., and no 171804 to LA); National Center of Competence in Research (NCCR) “SYNAPSY - The Synaptic Bases of Mental Diseases” from the Swiss National Science Foundation (no 51AU40_125759 to PC and KQD); and Fondation Alamaya (to KQD). The Oslo (Norway) cohort was funded by the Research Council of Norway (#223273/F50, under the Centers of Excellence funding scheme, #300309, #283798) and the South-Eastern Norway Regional Health Authority (#2006233, #2006258, #2011085, #2014102, #2015088 to IM, #2017-112). The Paris (France) cohort was funded by European Community's Seventh Framework Program grant (agreement No. HEALTH-F2-2010–241909, Project EU-GEI). The Prague (Czech Republic) cohort was funded by the Ministry of Health of the Czech Republic (Grant Number: NU20-04-00393). The Santander (Spain) cohort was funded by the following grants (to B.C.F): Instituto de Salud Carlos III, FIS 00/3095, PI020499, PI050427, PI060507, Plan Nacional de Drogas Research Grant 2005-Orden sco/3246/2004, and SENY Fundatio Research Grant CI 2005-0308007, Fundacion Marques de Valdecilla A/02/07 and API07/011. SAF2016-76046-R and SAF2013-46292-R (MINECO and FEDER). The West London (UK) cohort was funded The Wellcome Trust (Grant Number: 042025; 052247; 064607)

    Symptom Remission and Brain Cortical Networks at First Clinical Presentation of Psychosis: The OPTiMiSE Study

    Get PDF
    Individuals with psychoses have brain alterations, particularly in frontal and temporal cortices, that may be particularly prominent, already at illness onset, in those more likely to have poorer symptom remission following treatment with the first antipsychotic. The identification of strong neuroanatomical markers of symptom remission could thus facilitate stratification and individualized treatment of patients with schizophrenia. We used magnetic resonance imaging at baseline to examine brain regional and network correlates of subsequent symptomatic remission in 167 medication-naïve or minimally treated patients with first-episode schizophrenia, schizophreniform disorder, or schizoaffective disorder entering a three-phase trial, at seven sites. Patients in remission at the end of each phase were randomized to treatment as usual, with or without an adjunctive psycho-social intervention for medication adherence. The final follow-up visit was at 74 weeks. A total of 108 patients (70%) were in remission at Week 4, 85 (55%) at Week 22, and 97 (63%) at Week 74. We found no baseline regional differences in volumes, cortical thickness, surface area, or local gyrification between patients who did or did not achieved remission at any time point. However, patients not in remission at Week 74, at baseline showed reduced structural connectivity across frontal, anterior cingulate, and insular cortices. A similar pattern was evident in patients not in remission at Week 4 and Week 22, although not significantly. Lack of symptom remission in first-episode psychosis is not associated with regional brain alterations at illness onset. Instead, when the illness becomes a stable entity, its association with the altered organization of cortical gyrification becomes more defined

    Two distinct patterns of treatment resistance:clinical predictors of treatment resistance in first-episode schizophrenia spectrum psychoses

    Get PDF
    BACKGROUND: Clozapine remains the only evidence-based antipsychotic for treatment-resistant schizophrenia (TRS). The ability to predict which patients with their first onset of schizophrenia would subsequently meet criteria for treatment resistance (TR) could help to diminish the severe functional disability which may ensue if TR is not recognized and correctly treated. METHOD: This is a 5-year longitudinal assessment of clinical outcomes in a cohort of 246 first-episode schizophrenia spectrum patients recruited as part of the NIHR Genetics and Psychosis (GAP) study conducted in South London from 2005 to 2010. We examined the relationship between baseline demographic and clinical measures and the emergence of TR. TR status was determined from a review of electronic case records. We assessed for associations with early-, and late-onset TR, and non-TR, and differences between those TR patients treated with clozapine and those who were not. RESULTS: Seventy per cent (n = 56) of TR patients, and 23% of the total study population (n = 246) were treatment resistant from illness onset. Those who met criteria for TR during the first 5 years of illness were more likely to have an early age of first contact for psychosis (years) [odds ratio (OR) 2.49, 95% confidence interval (CI) 1.25-4.94] compared to those with non-TR. The relationship between an early age of first contact (years) and TR was significant in patients of Black ethnicity (OR 3.71, 95% CI 1.44-9.56); and patients of male gender (OR 3.13 95% CI 1.35-7.23). CONCLUSIONS: For the majority of the TR group, antipsychotic TR is present from illness onset, necessitating increased consideration for the earlier use of clozapine

    Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia

    Get PDF
    Importance: About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. Objective: To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. Design, Setting, and Participants: Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10 501) and individuals with non-TRS (n = 20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). Main Outcomes and Measures: GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. Results: The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P = .04). Conclusions and Relevance: In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance
    corecore