244 research outputs found

    Global water cycle amplifying at less than the Clausius-Clapeyron rate

    Get PDF
    A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7% °C−1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for inferring changes in the water cycle from changes in three-dimensional salinity. Using full depth salinity observations we infer a water cycle amplification of 3.0 ± 1.6% °C−1 over 1950–2010. Climate models agree with observations in terms of a water cycle amplification (4.3 ± 2.0% °C−1) substantially less than CC adding confidence to projections of total water cycle change under greenhouse gas emission scenarios

    Gulf Stream variability in the context of quasi-decadal and multidecadal Atlantic climate variability

    Get PDF
    The Gulf Stream plays an important role in North Atlantic climate variability on a range of timescales. The North Atlantic is notable for large decadal variability in sea surface temperatures (SST). Whether this variability is driven by atmospheric or oceanic influences is a disputed point. Long time series of atmospheric and ocean variables, in particular long time series of Gulf Stream position, reveal differing sources of SST variability on quasi‐decadal and multidecadal timescales. On quasi‐decadal timescales, an oscillatory signal identified in the North Atlantic Oscillation (NAO) controls SST evolution directly via air‐sea heat fluxes. However, on multidecadal timescales, this relationship between the NAO and SST changes, while the relationship between the NAO and Gulf Stream position remains consistent in phase and resonant in amplitude. Recent changes in the Gulf Stream Extension show a weakening and broadening of the current, consistent with increased instability. We consider these changes in the context of a weakening Atlantic overturning circulation. Plain Language Summary The North Atlantic Ocean is a region of remarkable variability in surface temperatures on timescales of decades and longer. Much debate surrounds whether this variability is driven by the atmosphere or by ocean currents, such as the Gulf Stream, moving heat around. In this study, we show that on timescales around 10 years, the atmosphere is the likely cause of Atlantic temperature variability but that this changes when multidecadal variability is considered. Changes ongoing in the Gulf Stream coincide with changes in the broader Atlantic—changes that imply a relatively cooler Atlantic in the coming decades

    Maintenance and broadening of the ocean’s salinity distribution by the water cycle

    Get PDF
    The global water cycle leaves an imprint on ocean salinity through evaporation and precipitation. It has been proposed that observed changes in salinity can be used to infer changes in the water cycle. Here salinity is characterized by the distribution of water masses in salinity coordinates. Only mixing and sources and sinks of freshwater and salt can modify this distribution. Mixing acts to collapse the distribution, making saline waters fresher and fresh waters more saline. Hence, in steady state, there must be net precipitation over fresh waters and net evaporation over saline waters. A simple model is developed to describe the relationship between the breadth of the distribution, the water cycle, and mixing—the latter being characterized by an e-folding time scale. In both observations and a state-of-the-art ocean model, the water cycle maintains a salinity distribution in steady state with a mixing time scale of the order of 50 yr. The same simple model predicts the response of the salinity distribution to a change in the water cycle. This study suggests that observations of changes in ocean salinity could be used to infer changes in the hydrological cycle

    Upper ocean manifestations of a reducing meridional overturning circulation

    Get PDF
    Most climate models predict a slowing down of the Atlantic Meridional Overturning Circulation during the 21st century. Using a 100year climate change integration of a high resolution coupled climate model, we show that a 5.3Sv reduction in the deep southward transport in the subtropical North Atlantic is balanced solely by a weakening of the northward surface western boundary current, and not by an increase in the southward transport integrated across the interior ocean away from the western boundary. This is consistent with Sverdrup balance holding to a good approximation outside of the western boundary region on decadal time scales, and may help to spatially constrain past and future change in the overturning circulation. The subtropical gyre weakens by 3.4Sv over the same period due to a weakened wind stress curl. These changes combine to give a net 8.7Sv reduction in upper western boundary transport. © 2012. American Geophysical Union. All Rights Reserved

    A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011

    Get PDF
    Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century Reanalysis dataset. Significant regional differences are seen on seasonal to decadal timescales. Seasonally, the jet latitude range is lower over the oceans compared to land, reduced from 20° over Eurasia to 10° over the North Atlantic where the ocean meridional heat transport is greatest. The mean jet latitude range is at a minimum in winter (DJF), particularly along the western boundary of the North Pacific and North Atlantic, where the land-sea contrast and SST gradients are strongest. The 141-year trends in jet latitude and speed show differences on a regional basis. The North Atlantic has significant increasing jet latitude trends in all seasons, up to 3° in winter. Eurasia has significant increasing trends in winter and summer, however, no increase is seen across the North Pacific or North America. Jet speed shows significant increases evident in winter (up to 4.7 ms−1), spring and autumn over the North Atlantic, Eurasia and North America however, over the North Pacific no increase is observed. Long term trends are generally overlaid by multidecadal variability, particularly evident in the North Pacific, where 20-year variability in jet latitude and jet speed are seen, associated with the Pacific Decadal Oscillation which explains 50% of the winter variance in jet latitude since 1940. The results highlight that northern hemisphere jet variability and trends differ on a regional basis (North Atlantic, North Pacific, Eurasia and North America) on seasonal to decadal timescales, suggesting that different mechanisms are influencing the jet latitude and speed. This is important from a climate modelling perspective and for climate predictions in the near and longer term

    Signatures of the 1976-1977 Regime Shift in the North Pacific Revealed by Statistical Analysis

    Get PDF
    Regime shifts are abrupt changes in an ecosystem that may propagate through multiple trophic levels and have pronounced effects on the biotic and abiotic environment, potentially resulting in ecosystem reorganization. There are multiple mechanisms that could cause such abrupt events including natural and anthropogenic factors. In the North Pacific, a major shift in the physics of the system, including a sudden increase in sea surface temperature, was reported in 1977 with a prominent biological response in the lower trophic levels and subsequent effects on the fisheries and economy of the region. Here we investigate the statistics of physical processes that could have triggered and maintained the late 1970s shift. The hypothesis of an extreme sea level pressure event abruptly changing the oceanic conditions in winter 1976–1977, which was maintained by long‐term changes in air‐sea interaction processes, is tested. Using dynamical proxies, we show the occurrence of an extreme atmospheric event, specifically a persistent Aleutian Low during winter 1976–1977, which constitutes a substantial part of the triggering mechanism of the regime shift. Subsequent sudden changes in the net heat flux occurred in the western North Pacific, particularly in the Kuroshio Extension region, which contributed to the maintenance of the new regime

    Insights into decadal North Atlantic sea surface temperature and ocean heat content variability from an eddy-permitting coupled climate model

    Get PDF
    An ocean mixed layer heat budget methodology is used to investigate the physical processes determining subpolar North Atlantic (SPNA) sea surface temperature (SST) and ocean heat content (OHC) variability on decadal-multidecadal timescales using the state-of-the-art climate model HadGEM3-GC2. New elements include development of an equation for evolution of anomalous SST for interannual and longer timescales in a form analogous to that for OHC, parameterization of the diffusive heat flux at the base of the mixed layer and analysis of a composite AMOC event. Contributions to OHC and SST variability from two sources are evaluated i) net ocean-atmosphere heat flux and ii) all other processes, including advection, diffusion and entrainment for SST. Anomalies in OHC tendency propagate anticlockwise around the SPNA on multidecadal timescales with a clear relationship to the phase of the Atlantic meridional overturning circulation (AMOC). AMOC anomalies lead SST tendencies which in turn lead OHC tendencies in both the eastern and western SPNA. OHC and SST variations in the SPNA on decadal timescales are dominated by AMOC variability because it controls variability of advection which is shown to be the dominant term in the OHC budget. Lags between OHC and SST is traced to differences between the advection term for OHC and the advection-entrainment term for SST. The new results have implications for interpretation of variations in Atlantic heat uptake in the CMIP6 climate model assessment

    Major variations in subtropical North Atlantic heat transport at short (5 day) timescales and their causes

    Get PDF
    Variability in the North Atlantic ocean heat transport at 26.5°N on short (5-day) timescales is identified and contrasted with different behaviour at monthly intervals using a combination of RAPID/MOCHA/WBTS measurements and the NEMO-LIM2 1/12° ocean circulation/sea ice model. Wind forcing plays the leading role in establishing the heat transport variability through the Ekman transport response of the ocean and the associated driving atmospheric conditions vary significantly with timescale. We find that at 5-day timescales the largest changes in the heat transport across 26.5°N coincide with north-westerly airflows originating over the American land mass that drive strong southward anomalies in the Ekman flow. During these events the northward heat transport reduces by 0.5-1.4 PW. In contrast, the Ekman transport response at longer monthly timescales is smaller in magnitude (up to 0.5 PW) and consistent with expected variations in the leading mode of North Atlantic atmospheric variability, the North Atlantic Oscillation. The north-westerly airflow mechanism can have a prolonged influence beyond the central 5-day timescale and on occasion can reduce the accumulated winter ocean heat transport into the North Atlantic by ∼40%

    Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave

    Get PDF
    The North Atlantic and Europe experienced two extreme climate events in 2015: exceptionally cold ocean surface temperatures and a summer heat wave ranked in the top ten over the past 65 years. Here, we show that the cold ocean temperatures were the most extreme in the modern record over much of the mid-high latitude North-East Atlantic. Further, by considering surface heat loss, ocean heat content and wind driven upwelling we explain for the first time the genesis of this cold ocean anomaly. We find that it is primarily due to extreme ocean heat loss driven by atmospheric circulation changes in the preceding two winters combined with the re-emergence of cold ocean water masses. Furthermore, we reveal that a similar cold Atlantic anomaly was also present prior to the most extreme European heat waves since the 1980s indicating that it is a common factor in the development of these events. For the specific case of 2015, we show that the ocean anomaly is linked to a stationary position of the Jet Stream that favours the development of high surface temperatures over Central Europe during the heat wave. Our study calls for an urgent assessment of the impact of ocean drivers on major European summer temperature extremes in order to provide better advance warning measures of these high societal impact events

    Improved estimates of water cycle change from ocean salinity: the key role of ocean warming

    Get PDF
    Changes in the global water cycle critically impact environmental, agricultural, and energy systems relied upon by humanity (Jiménez Cisneros et al 2014 Climate Change 2014: Impacts, Adaptation, and Vulnerability (Cambridge: Cambridge University Press)). Understanding recent water cycle change is essential in constraining future projections. Warming-induced water cycle change is expected to amplify the pattern of sea surface salinity (Durack et al 2012 Science 336 455–8). A puzzle has, however, emerged. The surface salinity pattern has amplified by 5%–8% since the 1950s (Durack et al 2012 Science 336 455–8, Skliris et al 2014 Clim. Dyn. 43 709–36) while the water cycle is thought to have amplified at close to half that rate (Durack et al 2012 Science 336 455–8, Skliris et al 2016 Sci. Rep. 6 752). This discrepancy is also replicated in climate projections of the 21st century (Durack et al 2012 Science 336 455–8). Using targeted numerical ocean model experiments we find that, while surface water fluxes due to water cycle change and ice mass loss amplify the surface salinity pattern, ocean warming exerts a substantial influence. Warming increases near-surface stratification, inhibiting the decay of existing salinity contrasts and further amplifying surface salinity patterns. Observed ocean warming can explain approximately half of observed surface salinity pattern changes from 1957–2016 with ice mass loss playing a minor role. Water cycle change of 3.6% ± 2.1% per degree Celsius of surface air temperature change is sufficient to explain the remaining observed salinity pattern change
    corecore