324 research outputs found

    Hexagonal Tilings and Locally C6 Graphs

    Full text link
    We give a complete classification of hexagonal tilings and locally C6 graphs, by showing that each of them has a natural embedding in the torus or in the Klein bottle. We also show that locally grid graphs are minors of hexagonal tilings (and by duality of locally C6 graphs) by contraction of a perfect matching and deletion of the resulting parallel edges, in a form suitable for the study of their Tutte uniqueness.Comment: 14 figure

    Cell Biology. Clogging information flow in ALS.

    Get PDF
    Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a devastating neurodegenerative disorder that causes a progressive loss of motor neurons, leading to paralysis and death typically within 2 to 5 years of onset. There are no cures and few treatments. ALS shares some genetic and pathological overlap with another neurodegenerative disease, frontotemporal dementia (FTD), which causes changes to personality and language. Mutations in the gene called chromosome 9 open reading frame 72 (C9orf72) are the most common genetic cause of both ALS and FTD. This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on [Volume 345 on 5 September 2014], DOI: 10.1126/science.1259461

    Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2

    No full text
    Ataxin-2 (ATXN2) homologs exist in all eukaryotic organisms and may have contributed to their origin. Apart from a role in endocytosis, they are known for global effects on mRNA repair and ribosomal translation. Cell size, protein synthesis, and fat and glycogen storage are repressed by ATXN2 via mTORC1 signaling. However, specific liver mitochondrial matrix enzymes and the mitochondrial repair factor PINK1 require ATXN2 abundance. During periods of starvation, ATXN2 is transcriptionally induced and localized to cytosolic stress granules, where nuclear factors dock to compensate RNA pathology. These physiological actions were now revealed to be crucial for human neurodegenerative diseases, given that ATXN2 depletion is surprisingly efficient in preventing motor neuron and cerebellar atrophy, as demonstrated in mouse models, flies, and yeast

    PlexinD1 and Semaphorin Signaling Are Required in Endothelial Cells for Cardiovascular Development

    Get PDF
    AbstractThe identification of new signaling pathways critical for cardiac morphogenesis will contribute to our understanding of congenital heart disease (CHD), which remains a leading cause of mortality in newborn children worldwide. Signals mediated by semaphorin ligands and plexin receptors contribute to the intricate patterning of axons in the central nervous system. Here, we describe a related signaling pathway involving secreted class 3 semaphorins, neuropilins, and a plexin receptor, PlexinD1, expressed by endothelial cells. Interruption of this pathway in mice results in CHD and vascular patterning defects. The type of CHD caused by inactivation of PlexinD1 has previously been attributed to abnormalities of neural crest. Here, we show that this form of CHD can be caused by cell-autonomous endothelial defects. Thus, molecular programs that mediate axon guidance in the central nervous system also function in endothelial cells to orchestrate critical aspects of cardiac morphogenesis

    The KO*-rings of BT^m, the Davis-Januszkiewicz Spaces and certain toric manifolds

    Full text link
    This paper contains an explicit computation of the KO*-ring structure of an m-fold product of CP^{\infty}, the Davis-Januszkiewicz spaces and toric manifolds which have trivial Sq^2-homology.Comment: 34 page

    Semaphorin-Plexin Signaling Guides Patterning of the Developing Vasculature

    Get PDF
    AbstractMajor vessels of the vertebrate circulatory system display evolutionarily conserved and reproducible anatomy, but the cues guiding this stereotypic patterning remain obscure. In the nervous system, axonal pathways are shaped by repulsive cues provided by ligands of the semaphorin family that are sensed by migrating neuronal growth cones through plexin receptors. We show that proper blood vessel pathfinding requires the endothelial receptor PlexinD1 and semaphorin signals, and we identify mutations in plexinD1 in the zebrafish vascular patterning mutant out of bounds. These results reveal the fundamental conservation of repulsive patterning mechanisms between axonal migration in the central nervous system and vascular endothelium during angiogenesis

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells

    Get PDF
    A novel mutation in the α-Synuclein (α-Syn) gene "G51D” was recently identified in two familial cases exhibiting features of Parkinson's disease (PD) and multiple system atrophy (MSA). In this study, we explored the impact of this novel mutation on the aggregation, cellular and biophysical properties of α-Syn, in an attempt to unravel how this mutant contributes to PD/MSA. Our results show that the G51D mutation significantly attenuates α-Syn aggregation in vitro. Moreover, it disrupts local helix formation in the presence of SDS, decreases binding to lipid vesicles C-terminal to the site of mutation and severely inhibits helical folding in the presence of acidic vesicles. When expressed in yeast, α-SynG51D behaves similarly to α-SynA30P, as both exhibit impaired membrane association, form few inclusions and are non-toxic. In contrast, enhanced secreted and nuclear levels of the G51D mutant were observed in mammalian cells, as well as in primary neurons, where α-SynG51D was enriched in the nuclear compartment, was hyper-phosphorylated at S129 and exacerbated α-Syn-induced mitochondrial fragmentation. Finally, post-mortem human brain tissues of α-SynG51D cases were examined, and revealed only partial colocalization with nuclear membrane markers, probably due to post-mortem tissue delay and fixation. These findings suggest that the PD-linked mutations may cause neurodegeneration via different mechanisms, some of which may be independent of α-Syn aggregatio

    The Parkinson\u27s Disease Protein α-Synuclein Disrupts Cellular Rab Homeostasis

    Get PDF
    α-Synuclein (α-syn), a protein of unknown function, is the most abundant protein in Lewy bodies, the histological hallmark of Parkinson\u27s disease (PD). In yeast α-syn inhibits endoplasmic reticulum (ER)-to-Golgi (ER→Golgi) vesicle trafficking, which is rescued by overexpression of a Rab GTPase that regulates ER→Golgi trafficking. The homologous Rab1 rescues α-syn toxicity in dopaminergic neuronal models of PD. Here we investigate this conserved feature of α-syn pathobiology. In a cell-free system with purified transport factors α-syn inhibited ER→Golgi trafficking in an α-syn dose-dependent manner. Vesicles budded efficiently from the ER, but their docking or fusion to Golgi membranes was inhibited. Thus, the in vivo trafficking problem is due to a direct effect of α-syn on the transport machinery. By ultrastructural analysis the earliest in vivo defect was an accumulation of morphologically undocked vesicles, starting near the plasma membrane and growing into massive intracellular vesicular clusters in a dose-dependent manner. By immunofluorescence/immunoelectron microscopy, these clusters were associated both with α-syn and with diverse vesicle markers, suggesting that α-syn can impair multiple trafficking steps. Other Rabs did not ameliorate α-syn toxicity in yeast, but RAB3A, which is highly expressed in neurons and localized to presynaptic termini, and RAB8A, which is localized to post-Golgi vesicles, suppressed toxicity in neuronal models of PD. Thus, α-syn causes general defects in vesicle trafficking, to which dopaminergic neurons are especially sensitive

    The Role of the Parkinson's Disease Gene PARK9 in Essential Cellular Pathways and the Manganese Homeostasis Network in Yeast

    Get PDF
    YPK9 (Yeast PARK9; also known as YOR291W) is a non-essential yeast gene predicted by sequence to encode a transmembrane P-type transport ATPase. However, its substrate specificity is unknown. Mutations in the human homolog of YPK9, ATP13A2/PARK9, have been linked to genetic forms of early onset parkinsonism. We previously described a strong genetic interaction between Ypk9 and another Parkinson's disease (PD) protein α-synuclein in multiple model systems, and a role for Ypk9 in manganese detoxification in yeast. In humans, environmental exposure to toxic levels of manganese causes a syndrome similar to PD and is thus an environmental risk factor for the disease. How manganese contributes to neurodegeneration is poorly understood. Here we describe multiple genome-wide screens in yeast aimed at defining the cellular function of Ypk9 and the mechanisms by which it protects cells from manganese toxicity. In physiological conditions, we found that Ypk9 genetically interacts with essential genes involved in cellular trafficking and the cell cycle. Deletion of Ypk9 sensitizes yeast cells to exposure to excess manganese. Using a library of non-essential gene deletions, we screened for additional genes involved in tolerance to excess manganese exposure, discovering several novel pathways involved in manganese homeostasis. We defined the dependence of the deletion strain phenotypes in the presence of manganese on Ypk9, and found that Ypk9 deletion modifies the manganese tolerance of only a subset of strains. These results confirm a role for Ypk9 in manganese homeostasis and illuminates cellular pathways and biological processes in which Ypk9 likely functions
    • …
    corecore