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Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a devastating 

neurodegenerative disorder that causes a progressive loss of motor neurons, leading to paralysis and 

death typically within 2 to 5 years of onset. There are no cures and few treatments. ALS shares some 

genetic and pathological overlap with another neurodegenerative disease, frontotemporal dementia 

(FTD), which causes changes to personality and language. Mutations in the gene called chromosome 9 

open reading frame 72 (C9orf72) are the most common genetic cause of both ALS and FTD. On pages 

1139 and 1192 of this issue, Kwon et al. (1) and Mizielinska et al. (2), respectively, describe how 

C9orf72 mutations might cause neurodegeneration. 

Mutations in the C9orf72 gene were identified as the most common cause of ALS and FTD (3, 

4). This discovery completely revolutionized research on both conditions, with intense efforts now 

focused on understanding the mechanisms by which C9orf72 mutations cause disease and developing 

therapeutic strategies to treat patients harboring these mutations. The mutational mechanism is a 

massive expansion of a hexanucleotide repeat, GGGGCC (G is guanine and C is cytosine) located in a 

noncoding region of the C9orf72 gene. Normally, the number of repeat copies ranges from 2 to 23, 

whereas hundreds or even thousands of copies constitute the disease-causing range. How do these 

extra GGGGCC repeats cause disease? There are three main hypotheses. One proposal is that expanse 

of repeats may interfere with the expression of C9orf72, thereby resulting in a loss of gene function 

that is detrimental (5). Another possibility is that the GGGGCC repeat transcript (as well as the 

antisense CCCCGG repeat transcript) may accumulate in RNA foci (6) and sequester RNA binding 

proteins, which could disrupt RNA metabolism. There is also the idea based on the perplexing finding 

that the long repeat is translated into protein in all six reading frames of the RNA (sense and antisense 

directions) in a manner that does not depend on the presence of the start codon ATG (A, adenine; T, 

thymine; G, guanine). This repeat-associated non-ATG translation (RAN translation) thus produces the 

dipeptide repeat proteins glycine-alanine (GA), glycine-proline (GP), proline-alanine (PA), glycine-
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arginine (GR), and proline-arginine (PR). These dipeptide repeat proteins are themselves aggregation-

prone and accumulate in affected brain regions (7). Of course, these three mechanisms are not 

mutually exclusive, but determining the contribution of each aberration will be critical for the 

development of effective therapeutic interventions. 

To dissect potential contributions from the repeat RNA and those of the dipeptide translation 

products to disease, Mizielinska et al. generated repeat RNA constructs harboring interruptions that 

preclude their translation. The authors engineered a series of stop codons in both the sense and 

antisense RNAs every 12 GGGGCC repeats. This way, the RNA could be expressed but the dipeptide 

translation products would not. They validated that the pure repeats and interrupted repeats formed the 

G-quadruplex structures characteristic of GGGGCC repeats (5), indicating that the interruption 

strategy did not grossly affect the repeat structure. Both pure and interrupted constructs also formed 

RNA foci when expressed in cultured neuronal cells. The authors then generated transgenic fruit flies 

expressing either the pure or interrupted GGGGCC repeats. Remarkably, expression of pure repeats 

(able to form dipeptides) in the fly eye caused degeneration, whereas the interrupted constructs 

(producing RNA only) did not. Likewise, expressing pure repeats in the nervous system of adult flies 

led to toxicity and early lethality, whereas the interrupted repeats had no effect. Blocking translation by 

cycloheximide treatment of flies partially suppressed the phenotype, indicating that toxicity was 

attributable to translation. Thus, Mizielinska et al. demonstrate that the GGGGCC repeats can cause 

toxicity through the production of aberrant translation products and not from the RNA alone. 

But which of the five possible dipeptides (GA, GP, PA, GR, PR) translated from the C9orf72 

repeat drives neurodegeneration? Mizielinska et al. generated transgenic flies expressing each 

dipeptide independently, but not in the context of a repeat sequence—that is, rather than using 

GGGGCC to produce the dipeptides, because the genetic code is degenerate (more than one codon 

codes for the same amino acid), the authors could use different codons to make the dipeptides of 
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interest (e.g., GR) without having a repetitive sequence. Expression of two of the dipeptides, GR and 

PR, was sufficient to cause toxicity and early lethality when directed to the eye or nervous system. The 

others were less toxic, but the GA dipeptide did show some toxicity later in life. These results focus 

attention on the arginine-containing dipeptides (GR and PR), and, to a lesser extent, GA, on driving 

neurodegeneration caused by C9orf72 mutations in FTD and ALS. 

Kwon et al. also identify the arginine-containing C9orf72 dipeptides GR and PR as drivers of 

toxicity, but present a new hypothesis to explain how they might contribute to FTD and ALS 

pathogenesis. In a broader sense, their study connects two of probably the most exciting new concepts 

in ALS and FTD research: C9orf72 nucleotide repeat expansion and the remarkable property of some 

RNA binding proteins (e.g., FUS, EWSR1, TAF15, hnRNPA2) harboring low-complexity sequences 

(also known as prion-like domains) to form polymeric assemblies, which incorporate into hydrogels in 

vitro (8). Such assemblies are akin to RNA granules (e.g., P-bodies and stress granules) that play key 

regulatory roles in gene expression (9). Many of the RNA binding proteins that can associate with 

hydrogels have serine-arginine (SR) repeat domains. These SR domain-containing proteins are 

regulated by phosphorylation (on the serine residues of the SR domains) by kinases. Kwon et al. show 

that this phosphorylation can control the association of SR proteins with hydrogels made up of RNA 

binding proteins such as hnRNPA2. Phosphorylation releases the SR domain protein from the gel. 

Mutating most of the serines in the SR domain protein to glycine (e.g., to convert these domains to GR 

instead of SR) blocks the effects of the kinases, and the mutant SR domain proteins are no longer able 

to be released from the hydrogel. 

Kwon et al. recognized that some of the dipeptide RAN translation products produced from the 

C9orf72 repeat transcripts resembled the mutated SR domains (e.g., GR and PR). The authors thus 

proposed an intriguing hypothesis: These RAN translation products associate with hydrogels (or 

similar types of assemblies in vivo, such as RNA-containing granules) but are impervious to the 
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regulatory action of kinases, and consequently, might clog up the trafficking of SR domain–containing 

RNA binding proteins that are moving in and out of these granules to transfer information throughout 

the cell. This block in information flow (e.g., alterations in RNA processing) could lead to cellular 

dysfunction and might underpin neurodegeneration in ALS and FTD. Indeed, recombinant RAN 

translation products comprising either polymers of GR or PR bound hnRNPA2 hydrogels and were 

resistant to kinase treatment (just like the mutated SR domains). When Kwon et al. added these 

recombinant GR and PR proteins to cultured cells, they entered the cells, got into the nucleus, and then 

localized to the nucleolus, where they caused cell death (see the figure). 

To determine why GR and PR proteins are toxic and to define the potential consequences of 

their accumulation in nucleoli, Kwon et al. added one of the dipeptides (PR) to cultured astrocytes (a 

key cell type relevant for ALS) and performed RNA sequencing to assess potential RNA processing 

alterations. They identified a number of splicing changes as well as changes in the amounts of different 

mRNAs and major impairments in synthesis of ribosomal RNA (rRNA). These results suggest that by 

binding to nucleoli and clogging multiple steps along the pathway of RNA biogenesis, dipeptide 

products of the C9orf72 repeat expansion could cause disease. Kwon et al. hypothesize that the 

arginine-rich stretches of the GR and PR peptides make them rogue mimics of nuclear localization 

signals, which may facilitate their entering the nucleus and wreaking havoc on multiple steps of RNA 

biogenesis. The derangements in RNA processing pathways, perhaps initially mild but accumulating 

over decades, may eventually lead to neurodegenerative disease pathogenesis. 

The studies of Mizielinska et al. and Kwon et al. strongly implicate dipeptide toxicity as a 

central component of neurodegeneration. A major challenge is to decipher the mechanism by which 

RAN translation products contribute to neurotoxicity, and to reexamine dipeptide pathology in human 

disease with a focus on distinguishing GR and PR from the other ones (e.g., GP, GA, PA). Another 

recent study by Su et al. (10) presents a potentially game-changing biomarker assay to detect and 
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quantify one of the RAN translation products from patient cerebrospinal fluid. Assays for the 

abundance of the disease-associated dipeptides could be used in a clinical trial setting to monitor the 

efficacy of potential disease-modifying therapies that target the repeat RNA expansion. These 

approaches could include small molecules, as shown by Su et al. (10), and antisense oligonucleotides 

(6, 11, 12). More focus on understanding the molecular mechanisms of RAN translation could reveal 

new and unexpected therapeutic strategies. Perhaps there are ways to specifically prevent the 

production of the more toxic dipeptides in exchange for expressing more of some of the benign ones. 

Unbiased screens using model organisms (yeast, flies, worms, etc.) to identify suppressors of dipeptide 

toxicity, combined with validation in human patient samples and cell lines, may also reveal 

mechanisms underpinning dipeptide toxicity and may suggest approaches to mitigate this toxicity. 
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