1,413 research outputs found
Recommended from our members
Understory Vegetation in Old-Growth and Second-Growth Tsuga Canadensis Forests in Western Massachusetts
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108â136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m^2 versus 1.06 ± 0.47%/m^2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.Organismic and Evolutionary BiologyOther Research Uni
Retrospective Cost Optimization for Adaptive State Estimation, Input Estimation, and Model Refinement
AbstractRetrospective cost optimization was originally developed for adaptive control. In this paper, we show how this technique is applicable to three distinct but related problems, namely, state estimation, input estimation, and model refinement. To illustrate these techniques, we give two examples. In the first example, retrospective cost model refinement is used with synthetic data to estimate the cooling dynamics that are missing from a model of the ionosphere-thermosphere. In the second example, retrospective cost adaptive state estimation is used with data from a satellite to estimate a solar driver in the ionosphere- thermosphere, with performance gauged by using data from a second satellite
Recommended from our members
Detection of PittâHopkins syndrome based on morphological facial features
This work describes a non-invasive, automated software framework to discriminate between individuals with a genetic disorder, PittâHopkins syndrome (PTHS), and healthy individuals through the identification of morphological facial features. The input data consist of frontal facial photographs in which faces are located using histograms of oriented gradients feature descriptors. Pre-processing steps include color normalization and enhancement, scaling down, rotation, and cropping of pictures to produce a series of images of faces with consistent dimensions. Sixty-eight facial landmarks are automatically located on each face through a cascade of regression functions learnt via gradient boosting to estimate the shape from an initial approximation. The intensities of a sparse set of pixels indexed relative to this initial estimate are used to determine the landmarks. A set of carefully selected geometric features, for example, the relative width of the mouth or angle of the nose, is extracted from the landmarks. The features are used to investigate the statistical differences between the two populations of PTHS and healthy controls. The methodology was tested on 71 individuals with PTHS and 55 healthy controls. The software was able to classify individuals with an accuracy rate of 91%, while pediatricians achieved a recognition rate of 74%. Two geometric features related to the nose and mouth showed significant statistical difference between the two populations
Current oscillations in a metallic ring threaded by a time-dependent magnetic flux
We study a mesoscopic metallic ring threaded by a magnetic flux which varies
linearly in time PhiM(t)=Phi t with a formalism based in Baym-Kadanoff-Keldysh
non-equilibrium Green functions. We propose a method to calculate the Green
functions in real space and we consider an experimental setup to investigate
the dynamics of the ring by recourse to a transport experiment. This consists
in a single lead connecting the ring to a particle reservoir. We show that
different dynamical regimes are attained depending on the ratio hbar Phi/Phi0
W, being Phi0=h c/e and W, the bandwidth of the ring. For moderate lengths of
the ring, a stationary regime is achieved for hbar Phi/Phi0 >W. In the opposite
case with hbar Phi/Phi0 < W, the effect of Bloch oscillations driven by the
induced electric field manifests itself in the transport properties of the
system. In particular, we show that in this time-dependent regime a tunneling
current oscillating in time with a period tau=2piPhi0/Phi can be measured in
the lead. We also analyze the resistive effect introduced by inelastic
scattering due to the coupling to the external reservoir.Comment: 17 pages, 13 figure
Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food : Outcome of the collaborative trial IMEP-41
Peer reviewedPublisher PD
Retrospective-Cost Adaptive Control of Uncertain Hammerstein-Wiener Systems with Memoryless and Hysteretic Nonlinearities
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97108/1/AIAA2012-4449.pd
Recommended from our members
Computational framework for longevity risk management
Longevity risk threatens the financial stability of private and government sponsored defined benefit pension systems as well as social security schemes, in an environment already characterized by persistent low interest rates and heightened financial uncertainty. The mortality experience of countries in the industrialized world would suggest a substantial age-time interaction, with the two dominant trends affecting different age groups at different times. From a statistical point of view, this indicates a dependence structure. It is observed that mortality improvements are similar for individuals of contiguous ages (Wills and Sherris, Integrating financial and demographic longevity risk models: an Australian model for financial applications, Discussion Paper PI-0817, 2008). Moreover, considering the dataset by single ages, the correlations between the residuals for adjacent age groups tend to be high (as noted in Denton et al., J Population Econ 18:203-227, 2005). This suggests that there is value in exploring the dependence structure, also across time, in other words the inter-period correlation. In this research, we focus on the projections of mortality rates, contravening the most commonly encountered dependence property which is the "lack of dependence" (Denuit et al., Actuarial theory for dependent risks: measures. Orders and models, Wiley, New York, 2005). By taking into account the presence of dependence across age and time which leads to systematic over-estimation or under-estimation of uncertainty in the estimates (Liu and Braun, J Probability Stat, 813583:15, 2010), the paper analyzes a tailor-made bootstrap methodology for capturing the spatial dependence in deriving confidence intervals for mortality projection rates. We propose a method which leads to a prudent measure of longevity risk, avoiding the structural incompleteness of the ordinary simulation bootstrap methodology which involves the assumption of independence
The far-infrared/radio correlation for a sample of strongly lensed dusty star-forming galaxies detected by Herschel
We investigate the radio/far-infrared (FIR) correlation for a sample of 28 bright high-redshift (1 z 4) star-forming galaxies selected in the FIR from the Herschel -ATLAS fields as candidates to be strongly gravitationally lensed. The radio information comes either from high sensitivity dedicated Australia Telescope Compact Array observations at 2.1 GHz or from cross-matches with the FIRST surv e y at 1.4 GHz. By taking advantage of source brightness possibly enhanced by lensing magnification, we identify a weak evolution with redshift out to z 4 of the FIR-to-radio luminosity ratio q FIR . We also find that the q FIR parameter as a function of the radio power L 1 . 4 GHz displays a clear decreasing trend, similarly to what is observed for optically/radio- selected lensed quasars found in literature, yet co v ering a complementary region in the q FIR âL 1 . 4 GHz diagram. We interpret such a behaviour in the framework of an in situ galaxy formation scenario, as a result of the transition from an early dust-obscured star-forming phase (mainly pinpointed by our FIR selection) to a late radio-loud quasar phase (preferentially sampled by the optical/radio selection)
Approximate Analytical Model for the Squeeze-Film Lubrication of the Human Ankle Joint with Synovial Fluid Filtrated by Articular Cartilage
The aim of this article is to propose an analytical approximate squeeze-film lubrication model of the human ankle joint for a quick assessment of the synovial pressure field and the load carrying due to the squeeze motion. The model starts from the theory of boosted lubrication for the human articular joints lubrication (Walker et al., Rheum Dis 27:512â520, 1968; Maroudas, Lubrication and wear in joints. Sector, London, 1969) and takes into account the fluid transport across the articular cartilage using Darcyâs equation to depict the synovial fluid motion through a porous cartilage matrix. The human ankle joint is assumed to be cylindrical enabling motion in the sagittal plane only. The proposed model is based on a modified Reynolds equation; its integration allows to obtain a quick assessment on the synovial pressure field showing a good agreement with those obtained numerically (Hlavacek, J Biomech 33:1415â1422, 2000). The analytical integration allows the closed form description of the synovial fluid film force and the calculation of the unsteady gap thickness
- âŠ