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Abstract: Longevity risk threatens the financial stability of private and government sponsored
defined benefit pension systems as well as social security schemes, in an environment
already characterized by persistent low interest rates and heightened financial
uncertainty.
The mortality experience of countries in the industrialized world would suggest a
substantial age-time interaction, with the two dominant trends affecting different age
groups at different times. From a statistical point of view, this indicates a dependence
structure.  It is observed that mortality improvements are similar for individuals of
contiguous ages (Wills and Sherris 2008). Moreover, considering the dataset by single
ages, the correlations between the residuals for adjacent age groups tend to be high
(as noted in Denton et al 2005). This suggests that there is value in exploring the
dependence structure, also across time, in other words the inter-period correlation.
In this research, we focus on the projections of mortality rates, contravening the most
commonly encountered dependence property which is the "lack of dependence"
(Denuit et al. 2005). By taking into account the presence of dependence across age
and time which leads to systematic over-estimation or under-estimation of uncertainty
in the estimates (Liu and Braun 2010), the paper analyzes a tailor-made bootstrap
methodology for capturing the spatial dependence in deriving prediction intervals for
mortality projection rates. We propose a method which leads to a prudent measure of
longevity risk, avoiding the structural incompleteness of the ordinary simulation
bootstrap methodology which involves the assumption of independence.

Response to Reviewers: Dear Referees,

we thank you for your reports, which were useful for us, in order to increase the value
of our work. Please find below, the description of how we have changed the paper
according to your suggestions.

Reviewer #1:

General comments
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The manuscript "Computational framework for longevity risk management" introduces
a Panel Sieve Bootstrapping technique in the Lee-Carter setting to capture the spatial
dependence across age and time in deriving prediction intervals for mortality projection
rates. The manuscript is well written and the information provided is so interesting. The
use of bootstrapping method to explore the dependency nature of residuals looks very
promising for me. However, I found some difficulties to prove the accurate projection
with reducing dependency nature of the residual using bootstrapping technique. The
authors started nicely to describe the procedure; however, failed to prove the evidence
of forecast accuracy using their techniques.

We have added some comments on forecast accuracy at the end of the section 4. In
particular, we have enriched the numerical application with the calculation and
comments on some forecast accuracy measures (table 9) and the implementation of a
backtesting procedure at the end of section 5.

Specific comments

1.Page 2, Lines 16-22: I don't think authors need to describe the parametric and
nonparametric/semi-parametric bootstrapping techniques.

We have deleted lines 16-22.

2.Pages 2-3, Lines 61 for page 2 and 1 for page 3: Is there any way to use the
projection pursuit approach to handle the high dimensional data?

Most methods for projecting mortality are extrapolative in nature: they make use of the
regularity typically found in both age patterns and trends over time (Booth et al. 2008)
as in Lee Carter model.
Nevertheless, mortality forecasting can be implemented under the so-called
explanatory approach, where the projections are based on structural or causal
epidemiological models of certain causes of death or risk factors. In this context a
important problem is concerned high dimensionality, especially when single years of
age are used, the high dimensionality referring to the total number of data ‘cells’ that
are modelled, equal to the product of the numbers of categories for the factors
classifying the data.
However we believe that in the mortality analysis the level of disaggregation according
spatial or socio-economic factors could add valuable information about the factors
driving changes in mortality, so that we will study this aspect and the related
dimensionality question in the development of the research. To this aim we have
added this consideration in the last sentences of the section 6 devoted to the
concluding remarks.

Booth H., Tickle L., 2008, Mortality Modelling and Forecasting: a Review of Methods,
Annals of Actuarial Science / vol.3, Issue 1-2.

3.Page 4,Lines 51-54: The authors didn't mention the fitting procedure of Lee-Carter
model. Did they use principal component technique in the estimation framework? From
my understanding, the optimal orthonormal basis set (bx) is obtained from PCA gives
coefficients are uncorrelated. Does it capture some sort of uncorrelated nature of time
effects (kt).

In section 3 we have clarified that we used the fitting procedure proposed by Lee and
Carter (1992) based on Singular Value Decomposition, where  the authors estimate
just one component bx. Nevertheless, other contributions are based on the estimation
of orthonormal bases from PCA (Hyndman and Hullah 2007).

Hyndman R.J., Ullah S., 2007, Robust forecasting of mortality and fertility rates: a
functional data approach, Computational Statistics & Data Analysis, issue 10, 4942-
4956.

4.Page 5, Line 56: Authors need to spell out the ADF.
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We have spelled out Augmented Dickey Fuller.

5.Page 6 (Empirical evidence): Obviously there is a cohort effect in the longitudinal
nature of the data. I just wonder how the authors handled this issue in there
bootstrapping technique to improve the mortality forecasts and prediction intervals.

In this paper the benefit of introducing the cohort effect has not been studied, but
certainly deserves a deep investigation. Nevertheless, the method we proposed is
flexible to incorporate the consideration of the cohort effect. The methodology is
enucleated on the basic version of the Lee Carter model. Our idea is to extend the
approach to the family of the Lee Carter models, as we have already pointed out in the
Concluding Remarks. In particular, in this context, the literature recognises the
desirable properties and the good performances of the Renshaw and Haberman Lee
Carter version (2006) which allows for cohort effect.

Renshaw, A. E., Haberman S.,  2006, A Cohort-Based Extension to the Lee-Carter
Model for Mortality Reduction Factors, Insurance: Mathematics and Economics 38:
556–70

6.In Figure 1: The higher variability should appear in the older age groups due to small
sample size. However, some sort of smoothing techniques (probably penalized
regression analysis) can reduce the observational errors, especially in the older age
groups. Did the authors think about the smoothing technique(s) to reduce the
observational errors for improving the mortality projections?

The higher variability in the older age is an interesting issue to deal with in the mortality
setting and the smoothing techniques is used by Hyndman and Ullah (2007) the
improve the forecasts. It would be interesting to develop this point in future research,
combining smoothing techniques and panel sieve bootstrap, as we have now
highlighted in the Concluding Remarks. We think this further aspect would not be so
time-consuming, but on the contrary easy to implement because of the flexibility of the
model we have proposed.

Reviewer #2:

1.Page 4 (line 29): "event is intersection of elements in A and belonging to A [?]" The
end of the sentence is unclear. The expressions "elements in A" and "belonging to A"
typically describe the same set..

We have corrected the redundant sentence.

2.Page 4 (lines 30-33): needs minor clarifications

a.In  "where F Mh (mh) are marginal ?" the terms FMh (mh) is not used in the
expression FM (m), and therefore should be deleted.

We have corrected the notation.

b.The sentence "Let us define the joint probability function of the random mortality
vector FM ?" should be something like:
"For any random mortality vector M, let us define the joint probability function FM from
Rn into [0,1] by the following expression FM (m) = ?"
Alternatively:
"For any random mortality vector M, let us define the joint probability function FM as
follows  FM : Rn ? [0,1]
       M |? FM (m) = P(??..)     "

We have corrected the sentence according to your first suggestion.

3.Page 4 (line 54): For clarification purpose, the authors could add the following items
to Equation (3):
 (x,t) = xt = ln(mxt) - x - x t  for any x = 1, ?, N and t = 1, ?, T

We have introduced the clarification.
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4.Figures and Tables:
a.Pages 7-9: references to figures and tables location are written in too small font.

We have enlarged the font of the references to figures and tables you referred.
b.Figures:
i. Figure 1: the authors could indicate on the graph that the upper curve represents the
year 1980 while the lowest curve shows the rates for 2006.

We have indicated it in the legend of the Figure.

ii.Figure 2: the authors should indicate in the text what bx1 and kt(adjusted)1 stand for.

We have modified the mistake in the labels of the Figure 2.

iii.Figure 3: the legend is missing

 We have added the legend.

iv.Figures 4 and 5:  it will be better to have each of these ste of graphs in a "block",
unbroken.

 We will ask the Journal to put it in a single page.

v.Figure 7: a bit too small.

We have enlarged Figure 7.

vi.Figure 10: the authors should indicate the forecast horizon (length of forecast), as
well as how many years where used for the data + data origin. Something like "Figure
10 - Forecasted kt - Horizon (20XX-20XX)- Residual Bootstrap and Panel Sieve
Bootstrap - Italian males (19XX-20XX)"

We have renamed the figure according to your suggestion and have added a
clarification on page 8 line 50.

c.Tables:
i. Table 2: should not be broken.

We will ask the Journal to put it in a single page.

ii.Table 3: for consistency the authors should use "h" instead of "H". Also, the authors
should indicate in the title "Table 3 - Comparison among Residual Sieve Bootstrap
(RSB) and Panel Sieve Bootstrap (PSB), B=100"

We have changed Table 3 according to your suggestion.

iii.Tables 3, 5, and 7: the authors should indicate that the values shown represent the
"mean residual"

In the Table 3 we show the residuals of the Lee Carter model, in the Table 5 the
residuals of the autocorrelation function, in Figure 7 the parameter ax of the Lee Carter
fitted after implementing bootstrap on the residuals.

Many thanks
The Authors
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The manuscript "Computational framework for longevity risk management" introduces 
a Panel Sieve Bootstrapping technique in the Lee-Carter setting to capture the spatial 
dependence across age and time in deriving prediction intervals for mortality 
projection rates. The manuscript is well written and the information provided is so 
interesting. The use of bootstrapping method to explore the dependency nature of 
residuals looks very promising for me. However, I found some difficulties to prove the 
accurate projection with reducing dependency nature of the residual using 
bootstrapping technique. The authors started nicely to describe the procedure; 
however, failed to prove the evidence of forecast accuracy using their techniques.   
 
We have added some comments on forecast accuracy at the end of the section 4. In 
particular, we have enriched the numerical application with the calculation and 
comments on some forecast accuracy measures (table 9) and the implementation of a 
backtesting procedure at the end of section 5. 

 
 
Specific comments 
 

1. Page 2, Lines 16-22: I don't think authors need to describe the parametric and 
nonparametric/semi-parametric bootstrapping techniques. 
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2. Pages 2-3, Lines 61 for page 2 and 1 for page 3: Is there any way to use the projection 

pursuit approach to handle the high dimensional data?   
 

Most methods for projecting mortality are extrapolative in nature: they make use of the 
regularity typically found in both age patterns and trends over time (Booth et al. 2008) 
as in Lee Carter model. 
Nevertheless, mortality forecasting can be implemented under the so-called 
explanatory approach, where the projections are based on structural or causal 
epidemiological models of certain causes of death or risk factors. In this context a 
important problem is concerned high dimensionality, especially when single years of 
age are used, the high dimensionality referring to the total number of data ‘cells’ that 
are modelled, equal to the product of the numbers of categories for the factors 
classifying the data. 
However we believe that in the mortality analysis the level of disaggregation 
according spatial or socio-economic factors could add valuable information about the 
factors driving changes in mortality, so that we will study this aspect and the related 
dimensionality question in the development of the research. To this aim we have added 
this consideration in the last sentences of the section 6 devoted to the concluding 
remarks. 
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model. Did they use principal component technique in the estimation framework? 
From my understanding, the optimal orthonormal basis set (bx) is obtained from PCA 
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approach to the family of the Lee Carter models, as we have already pointed out in the 
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sample size. However, some sort of smoothing techniques (probably penalized 
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groups. Did the authors think about the smoothing technique(s) to reduce the 
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The higher variability in the older age is an interesting issue to deal with in the 
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Abstract.  

Longevity risk threatens the financial stability of private and government 

sponsored defined benefit pension systems as well as social security schemes, in 

an environment already characterized by persistent low interest rates and 

heightened financial uncertainty.  

The mortality experience of countries in the industrialized world would suggest a 

substantial age-time interaction, with the two dominant trends affecting different 

age groups at different times. From a statistical point of view, this indicates a 

dependence structure.  It is observed that mortality improvements are similar for 

individuals of contiguous ages (Wills and Sherris 2008). Moreover, considering 

the dataset by single ages, the correlations between the residuals for adjacent age 

groups tend to be high (as noted in Denton et al 2005). This suggests that there is 

value in exploring the dependence structure, also across time, in other words the 

inter-period correlation.  

In this research, we focus on the projections of mortality rates, contravening the 

most commonly encountered dependence property which is the “lack of 
dependence” (Denuit et al. 2005). By taking into account the presence of 

dependence across age and time which leads to systematic over-estimation or 

under-estimation of uncertainty in the estimates (Liu and Braun 2010), the paper 

analyzes a tailor-made bootstrap methodology for capturing the spatial 

dependence in deriving confidence intervals for mortality projection rates. We 

propose a method which leads to a prudent measure of longevity risk, avoiding the 

structural incompleteness of the ordinary simulation bootstrap methodology which 

involves the assumption of independence.  

 
1. Introduction 

The improvements of the longevity phenomenon over the time are noteworthy. According to 
Swiss Re (2011), “life expectancy at birth in the developed world has risen from around 65 
years in 1950 to over 75 years now, or one extra year every six years, and is currently 
projected to rise to more than 88 years by the end of this century”. 
From the life insurance companies’ point of view, the risk that people live longer than 
predicted, i.e. the so-called longevity risk, has to be carefully managed. Longevity 
projections are also a critical feature for sponsors of defined benefit pension plan and 
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government sponsored welfare systems and social security systems. On a global scale, the 
costs of ageing are a substantial threat to the financial stability of whole nations and make 
fiscal balance sheets more vulnerable, as pointed out by International Monetary Fund 
(2012). 
Broadly speaking, our research is addressed to produce reliable mortality projections. In 
order to manage the mortality risk properly, we need to assess the uncertainty coming from 
the mortality dynamics carefully. In the literature, simulation techniques have been proposed 
to measure the mortality risk and confidence intervals are then calculated to obtain a 
measure of the risk arising from the uncertain mortality rates. With regard to the Lee Carter 
framework, which is a seminal work in terms of mortality projections, empirical studies 
reveal better performances under the bootstrap techniques rather than by implementing the 
Monte Carlo approach which is sensitive to the identifiability constraints (Renshaw and 
Haberman 2008).  
Recently, various bootstrap methods have been proposed to measure mortality risk, as seen 
in Brouhns et al. (2005) for the parametric bootstrap, in Brouhns et al. (2005) for the semi-
parametric bootstrap, and in Koissi et al. (2006) for the ordinary residual bootstrap. In these 
papers, the implicit assumption is that the residuals after fitting the model to the data are 
independent and identically distributed. However, as has been shown in the literature, 
correlations across age and year can be observed in the residuals. It should be highlighted 
that if a correlation structure between the residuals exists and it is not taken into account, 
then the resulting confidence intervals could be too narrow or too wide. In particular, when 
calculating confidence intervals by bootstrap methods, there may be an underestimation of 
the mortality risk if correlations in residuals are not properly handled. In the light of this 
consideration, in the context of mortality data, the re-sampling has to be carried out in such 
a way that the dependence structure is captured. One of the typical methods used for 
bootstrapping dependent data is the block bootstrap (Kunsch 1989). The basic idea of the 
block bootstrap is based on drawing observations with replacement. In the block bootstrap, 
however, instead of single observations, blocks of consecutive observations are drawn. This 
is done in order to capture the dependency structure of neighbouring observations (Liu and 
Braun 2010). In the literature, there is considerable evidence that the sieve bootstrap, 
initially proposed by Kreiss (1992) and Bulhmann (1997), usually outperforms the block 
bootstrap (Choi and Hall 2000). D’Amato et al. (2012) apply a sieve bootstrap on the 
residuals of  the Lee Carter model; they take up the Lee Carter parametric model firstly and 
then re-sample a particular class of the residuals, the so-called centred residuals, according 
to the design of the typical autoregressive sieve bootstrap. According to this scheme, they 
are able to reproduce in the sampling the dependence structure that exists between the years 
of the dataset for each age.  
In this work we try to capture a more complex structure, incorporating in the bootstrap 
procedure the whole error matrix. In the case of panel data with a complex dependence 
structure, there are two different way to implement a bootstrap scheme: the first one is to 
apply a vector autoregressive (VAR) bootstrap, which extends the autoregressive procedure 
to the multidimensional case (Trapani, 2011); the second one consists of a univariate AR 
sieve bootstrap, with the modification that the residuals are re-sampled jointly across units to 
preserve the cross-sectional dependence (Smeeks and Urbain, 2011). With regard to the 
former, the VAR bootstrap scheme becomes infeasible in panel data where the number of 
cross-sectional units is large and the dimension of the system is too high. With regard to the 
latter, Palm (1977) shows that any VAR model can be written as a system of ARMA 
equations for each unit; starting from this consideration and using the results of Kreiss et al. 
(2011), Smeeks and Urbain (2011) describe the AR sieve bootstrap algorithm for panel data. 
Chang (2004) has proven the validity of the AR sieve bootstrap in the context of panel data 
if there is only one contemporaneous source of dependence between the units; however, this 
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condition is likely to be violated in many empirical applications. In this paper, we verify if 
the condition for the validity of the AR sieve bootstrap in panel data exists for mortality data 
in order to apply an opportune algorithm to the residuals of the Lee Carter model. The paper 
is structured as follows: in section 2, we provide a motivation for the paper; in section 3 
dependency is discussed and in section 4 the panel sieve algorithm is described; section 5 
provides an application to Italian male mortality data, articulated in two steps: first the 
condition of validity is verified and then the algorithm is applied; finally, some remarks and 
conclusions are presented in section 6.  

 

2. Motivation 

A key objective of for many of the aforementioned stakeholders is to ensure that longevity 
risk is well managed and is supported by adequate financial resources. An integrated method 
of risk assessment should help to protect policyholders’ and pension plan members’ interests 
more effectively, by making reliable evaluation of the uncertainty around longevity 
projections. This corresponds to having robust methods of calculation of the confidence 
intervals for the forecasted rates. The robustness has to be investigated with respect to both 
the statistical principles and the objective of consistent risk management. The increasing 
complexity of the real world imposes the necessity of modeling of dependent risks, so that, 
in the case of longevity data, the interactions between age and time cannot be neglected. 
Indeed, the presence of spatial dependence across age and time leads to systematic over-

estimation or under-estimation of uncertainty in the estimates, caused by whether negative 

or positive dependence dominates (Liu et al. 2010). Thus, in order to produce accurate 
longevity projections, it is necessary to allow for the so-called dependency risk (D’Amato et 
al. 2012). 
In light of these considerations, the aim is to develop an appropriate algorithm for deriving 
better forecasts of mortality rates, taking into account the dependency feature.  

 

3. Dependence Framework 

The leading statistical model for projecting mortality is represented by the Lee Carter model. 
Lee and Carter (1992) suggested a log-bilinear form for the force of mortality: 
 
 
 
 
  1  
 
where xtm is the crude log-death rate at age x in calendar year t, which is the logarithm of the 

number of deaths occurred among individual aged x in calendar year t, divided by the 
corresponding exposure-to-risk and where the constraints ensure the model identification. 

The value of x corresponds to the average of  xtmln over time t. The actual forces of 

mortality change according to the overall mortality index tk modulated by an age 

response x . The time factor tk is intrinsically viewed as a stochastic process and Box-

Jenkins techniques are then used to model and forecast tk . Formally, the log mortality rate 

of the x-year-old at time t  xtmln , based on the Lee Carter model , is represented by panel 

data, in other words multidimensional data. The panel under consideration has the form xtm , 

exp( )xt x x t xtm k u   
ln( )xt x x t xtm k u   

0
t

tk

1
x
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1,...,x N and 1,...,t T , where the cross-sectional dimension is related to the ages and 
time series dimension to the observation periods.  
Generally, panel data could reveal dynamics that are difficult to detect only with cross-
sectional data. In the case of human population, each single unit is represented by a different 

age; the variable observed is the central mortality death rate and the observations areNT , 

consisting of time series of length T , on N parallel units-ages. Cross-sectional or “spatial” 
dependence is a problematic aspect of many panel data sets in which the cross-sectional 
units are not randomly sampled. The standard techniques can fail to account for the presence 
of spatial correlations, yielding inconsistent estimates of the standard errors of the model 
parameters. 

In the mortality setting, consider a rectangular mortality data array xtm , with the log-
bilinear structure, as composed by determinations from random vectors. 

Let   ,,A  the probability space where A the  algebra on and a probability on A . 
Let us consider a random mortality vector M represented by a n-dimensional vector of  nMMM ,...,, 21 , where the random variables iM are the components of the vector. 
Note that in the case of a specific demographic population, for each n-dimensional vector of 

real numbers  nmmmm ,...,, 21 , it is possible to write the following:          ii
n
inn mMmMmMmM    :,...,,: 12211  where this 

event is intersection of elements belonging to A . 
 For any random mortality vector M, let us define the joint probability function MF   from 

 0,1nR   by the following expression:    nnM mMmMmMPmF  ,...,, 2211  where 

 MF m  are marginal probability mass functions. In the rectangular mortality data array, it is 

essential to compare the random mortality vectors allowing for dependence. With this aim in 
mind, the standard tool is the correlation Pearson index, which we can arrange in the context 
under consideration as follows: 
     jj

ji
M

MVMV

MMCov
r

,
          2  

 
In this paper, we start to verify the validity of the assumption of lack of dependence or the 
presence of correlations across age and year in the residuals, because calculating confidence 
intervals by bootstrap methods may imply an underestimation of the mortality risk if 
correlations in residuals are not properly handled (D’Amato et al. 2012).  
Hence, we investigate the autocorrelation structure in the matrix of residuals both through 
graphical analysis and statistical inference.  
Let Σ(x,t) be the matrix of residuals obtained after fitting the Lee Carter model: 
   txxxtxt km   ln          3  
  
Following Lee and Carter (1992), the parameters can be estimated according to the SVD of 
the matrix of the log age-specific observed death rates with suitable constraints (see eq. 1) to 
obtain a unique solution. The matrix can be viewed as being composed of some random 
vectors, where in the rows and columns the residuals are collected respectively by age and 
time and are realizations of different stochastic processes. In order to investigate the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

5 

 

correlation in the residuals, we make use of the correlogram, a graphical tool to examine the 
strength of association between observations. In our mortality matrix, it is interesting to 
evaluate the correlation between both age and time, i.e. across rows and columns. In the 
former case, we are interested in the distance between neighboring observations, i.e. the 
residuals for consecutive ages. In the latter case, we look at each row as a time series and 
verify whether it is autocorrelated or not. The graphical results need to be supported by 
statistical inference. We have chosen to use the Ljung–Box test, a statistical test of whether 
any of a group of autocorrelations of a time series are different from zero, which tests the 
overall randomness based on a number of lags instead of testing randomness at each distinct 
lag.   

 

4. The AR sieve algorithm for panel data  
D’Amato et al. (2012) take up the older idea of first fitting Lee Carter parametric model, 
because of its well known properties (Deaton and Paxson, 2004) and then re-sampling a 
particular class of the residuals, the so-called centred residuals, according to the design of 
the typical sieve scheme: an autoregressive approximation for generating bootstrap 
replications of the data. As has been shown, the order of the autoregressive approximation 
increases at some appropriate rate with increases in the sample size (Kreiss 1992). In this 
paper, we explore the possibility of applying the AR sieve bootstrap algorithm adapted for 
panel data to the error matrix of the Lee Carter model. In order to describe this algorithm, 
we introduce below the adopted notation: 

xtu          error term 

xt    innovation term 

xtr    estimated innovation or residual 

xtr          mean value of the residuals 

xtxt rr    centred residuals 

xrF̂    empirical cumulative distribution function of the residuals 
*
xtu    Bootstrap error 

*
xt          iid term from xrF̂  

Let xtm  describe the matrix of central death rates; The LC model is fitted to the xtm  and the 

matrix of the residuals by age and time  indicated by xtu  is computed, x=1…N, t=1,…T. The 

steps of the algorithm are the following: 
 

1. For each age x=1,..,N, the error term is approximated by an  qAR   representation: 

   q

j
xtjxtjxt uu

1


         

 4  

 
We specify the value of the lag length  nq   by Akaike’s  information criterion as suggested by 
Amemiya (1973) and calculate the autoregressive coefficients by using the Yule-Walker 
method: 

 
 

2. For each age x=1,..,N, we run an ADF (Augmented Dickey Fuller) regression with q lags to 
obtain residuals: 
 

 nqjj ,...,1     ,ˆ 
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We highlight that the lag q needs to be selected for each equation individually by using 
information criteria. 
3. For each age x=1,..,N, recentre the residuals to obtain xtr~  

4. Resample with replacement from  '1
~,,~~
qNTtqqt rrr  to obtain bootstrap residuals  '**

1
* ,, NTtt    

 

5. For each age x=1,..,N, construct *
xtu  recursively  as 

 

   )(

1

** ˆˆ
np

j
xtjxtjxt uu 

        
 6  

On the basis of the values of  *
xt  obtained by randomly sampling with replacement from  ',,,1,,

~,,~~
TNqtqtq rrr  , the simulated  *

xtu  are computed and consequently the *
xtm  

are mapped. New matrices of central death rates are obtained as the difference between the 
observed death rates and the synthetic *

xtu . Finally the estimates *** ,, txx k    are obtained by 

fitting the log-bilinear structure to the *
xtm . In particular, for each of the B bootstrap 

samples, the ARIMA model is re-fitted to *tk  and then re-projected. Bootstrap percentile 

intervals on the re-projected *tk  are constructed. The validity of this AR sieve algorithm 

adapted to panel data is verified if the matrix xtr  is a white noise vector, which requires that 

there is only contemporaneous dependence between units.  
To verify the forecast goodness of the bootstrap technique under consideration, some 
measures of forecast accuracy can be investigated.  There are some commonly used 
accuracy measures whose scale depends on the scale of the data, like ME, RMSE and MAE, 
and others scale- independent, like MPE and MAPE. In the following numerical application 
we offer a comparative implementation of these measures in both the Lee Carter model 
(where is dependence not assumed) and in the panel sieve algorithm (which considers 
dependence) to show how the latter improves the accuracy in the mortality forecasts. 
Moreover, we set out a backtesting procedure for multi-ahead mortality projections (as in 
Dowd et al. 2010) to evaluate the forecast performance of the bootstrap algorithm.  
 

5. Empirical evidence 
Chang (2004) prove the validity of the AR sieve bootstrap in the context of panel data if 
there is only contemporaneous dependence between units; however, this condition is likely 
to be violated in many empirical applications. In this section, we verify if the condition of 
validity of the AR sieve bootstrap in panel data exists for mortality data, in order to apply a 
bootstrap algorithm to the residuals of the Lee Carter model. In other words, we have to 
verify if the residuals on which we will operate the bootstrap are distributed as a vector 
white noise.  
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We investigate the empirical evidence of the aforementioned condition by considering the 
Italian male mortality dataset, ranging from 1980 up to 2006, from ages 0 up to 100. The 

death rates, considered by single calendar year and by single year of age, are aggregated in 

an open age group 100+ for the class of age above 100 years. Before implementing the 
bootstrap algorithm, we proceed as follows: 
 
1. we fit the Lee Carter model to the selected dataset;   
2. we analyze the residuals: as has been well verified in the literature, the independence 
assumption is violated; 
3. we operate an autoregressive approximation of the residuals for each age. We specify the 
value of the lag length  nq  by Akaike’s information criterion as suggested by Amemiya 
(1973) and calculate the autoregressive coefficients by using the Yule-Walker method. 
4. we verify if the errors of the autoregressive approximation operated in the previous step 
are a vector white noise. 
A k by 1 vector stochastic process  t  is said to be a vector white noise if     





tt
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E
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Figure 1 illustrates the evolution of the mortality dynamics over age, simultaneously 
highlighting the log death rate trends from 1980 to 2006. 
 

 Figure 1- log death rates - Italian male population, age: from 0 to 100 (the upper curve represents the   
 year 1980 while the lowest curve shows the rates for 2006) 

 
In order to produce mortality death rates projections, we implement the standard version of 
the Lee Carter model (1992). Figure 2 shows the estimates of the model parameters 
provided by the demography package developed in R software (Hyndman): 
 

 Figure 2- ax, bx, kt adjusted, basic Lee Carter model - Italian male population, age: from 0 to 100 
 

As is shown in Figure 3, there are systematic patterns in the residual plots suggesting that 
the independence assumption is violated.  

 
Figure 3- Residuals year vs age – basic Lee Carter model -Italian male population, age: from 0 to 100 

 

Starting from the residuals represented, we subdivide the matrix of residuals into n vectors, 
where n corresponds to the number of ages being considered, and find an autoregressive 
approximation for the residuals for each age. For the sake of clarity, let us consider the first 
row vector of the residual matrix which corresponds to the age equal to 0. We represent it as 
an AR process and calculate the correspondent forecasted errors. We successively replicate 
the above operation for each row vector (each age) and construct a new matrix of errors, 
where, in each row, the errors of the AR processes derived exactly from the residuals of the 
Lee Carter model are allocated. Finally, by verifying if the composed matrix represents a 
vector white noise, we can check whether the conditions described in formula  7  are 
verified. On this basis, we can apply the AR sieve bootstrap for the panel data using this 
new error matrix. 
  
Numerical results 
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In previous studies, the fitting of the Lee Carter model has been shown and the residuals 
have been represented, which reveal that there is dependence in the residuals.  In the 
following, we fully investigate the particular dependence structures. Separately for each row 
and column, respectively representing age and calendar year, we have produced the 
correlograms shown, in order to highlight graphically the correlation between values of the 
process at different points in time and at different ages. The first group of correlograms, 
which is displayed in Figure 4, is constructed considering the correlation between years for 
each age. In this case, for each age, we are dealing with a time series generated from a 
stochastic process and verify the autocorrelations over time. In other words, we verify the 
existence of temporal dependence for each age during the years. The correlograms show the 
presence of temporal dependence for almost all ages and in particular for the younger ones.  
 
 

Figure 4- Autocorrelation function of the residuals by age 
 

The second group of correlograms, which is displayed in Figure 5, is constructed by 
considering the correlation between ages for each year of the dataset. Thus, time 1 
corresponds to the year 1980, time t=2 to the year 1981 and so on.  They show the 
persistence of spatial correlation in almost all cases between the years; in other words, in 
this case, spatial correlation means that there is a dependence structure between ages in the 
same year and this appears for each year that is separately considered: given t, we observe 
the correlation between the residuals of age x=0,1,2,…,p where p is the maximum lag 
considered. 
 

 
Figure 5 - Autocorrelation function of the residuals by time 

 
The previous graphical analysis is supported by the results of the Ljung-Box test, which 
have been implemented for each age separately. As shown in table 1, for almost all ages, the 
hypothesis of null correlation is rejected. In conclusion, we note that the presence of a 
dependence structure between residuals of the mortality model has been verified and so 
needs to be taken into account. 

 

Table 1 - Ljung-Box test on the residuals 

 
Furthermore, for formally testing the dependence structure into the residuals, we have 

considered also the standard measure of Pearson, since it is particularly suitable to the 

configuration model which assumes normality in the residuals. Table 2 and Figure 6 show a 

strong positive dependence.  

 

 

 
Table 2 - Pearson’s correlation coefficient test on the residuals 

 
 

Figure 6 - Pearson’s correlation coefficient  on the residuals - contour map 
 
 

Thus, the presence of a dependence structure in residuals of the mortality model has been 
verified and needs to be taken into account.  
At this stage we compare two kinds of simulation scheme: a) the residual bootstrap on the 
Lee Carter residuals relying on the independence assumption; b) the Panel Sieve bootstrap 
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algorithm that we have developed in the Lee Carter setting for capturing the dependence 
structures which we have assessed. Figures 7-10 display the simulated trajectories for the 
model parameters for x , x and tk in the two different bootstrap schemes for different 

numbers of simulations 1000,500,100B . The model is fitted to the Italian male mortality 
dataset, ranging from 1980 up to 2006, from ages 0 up to 100 and then the parameter kt is 

projected for h=1,...,15 years ahead. 
We begin by examining the following Figures which illustrate the simulated patterns for the 
model parameters for x , x and tk and for the projected tk in the case of 1000B   

 

 
Figure 7 – Simulated paths for ax –  Residual Bootstrap and Panel Sieve Bootstrap 

 

 
Figure 8 - Simulated paths for bx – Residual Bootstrap and Panel Sieve Bootstrap 

 
 

Figure 9 - Simulated paths for kt – Residual Bootstrap and Panel Sieve Bootstrap 
 
 
 

Figure 10 - Forecasted kt – Residual Bootstrap and Panel Sieve Bootstrap 
 
 

As is highlighted in the graphs, the Panel Sieve Bootstrap produces wider confidence 

intervals, since it allows for another source of risk: the dependency risk (D’Amato et al. 
2012). 

In our analysis, we find the following numerical results on the basis of the algorithm 
indicated in section 4. Table 3 illustrates different percentiles of the mean of projection of tk  

obtained implementing different bootstrap algorithms for future times of valuation equal 
tohand for the number of simulations equal to100B . In particular, for 15,...,1h periods 
ahead, the performance of the residual bootstrap and panel sieve bootstrap is examined by 
calculating 5% and 95% confidence intervals, CI’s.  

 
 

Table 3 – Comparison among Residual Sieve Bootstrap (RSB) and Panel Sieve Bootstrap (PSB), 
B=100 

 
 

As is clearly shown by Table 4, if we compare the different algorithms in terms of the 
distance between the 95% and 5% percentiles, we notice the wider CI’s for the Panel Sieve 
Bootstrap. From this point of view, the residual bootstrap leads to less uncertain projections, 
with the dependency in the data being completely neglected. In the case of Panel Sieve 
bootstrap procedure we are able to capture the whole correlation structure and thereby obtain 
more reliable projections.  

 
Table 4 – Comparison among Residual Bootstrap and Panel Sieve Bootstrap, in terms of the 

difference between 95% and 5%, B=100 
 

The outcomes remain stable for the increasing the number of replications, as shown in tables 

5-8, for the cases of 500B and 1000B . 

 
Table 5 – Comparison among Residual Bootstrap and Panel Sieve Bootstrap, B=500 
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Table 6 – Comparison among Residual Bootstrap and Panel Sieve Bootstrap, in terms of the 
difference between 95% and 5%, B=500 

 
Table 7– Comparison among Residual Bootstrap and Panel Sieve Bootstrap, B=1000 

 
Table 8 – Comparison among Residual Bootstrap and Panel Sieve Bootstrap, in terms of the 

difference between 95% and 5%, B=1000 
 

To verify the forecast goodness of the panel sieve bootstrap technique, we investigate some 
measures of forecast accuracy in both Lee Carter model and in the panel sieve algorithm; 
table 9 shows how the panel sieve bootstrap improves the accuracy in the mortality forecasts 
with respect to widely used Lee Carter model. 
 
Table 9– Comparison among Lee Carter and Panel Sieve bootstrap in terms of forecast accuracy 

 
 Finally, we set out a backtesting procedure for multi-ahead mortality projections to evaluate 
 the forecast performance of the panel sieve bootstrap algorithm. Its implementation is based 
 on the following steps:  

- selection of the metric of interest: we have chosen to adopt the life expectancy at birth, 
which is a very useful metric in the actuarial practice; 

- selection of the historical lookback window and the lookforward window to make the 
backtesting forecasts: we have considered the Italian male mortality dataset, ranging 
from 1980 up to 1996, from ages 0 up to 100; it is a reduced dataset with respect to that 
previously used, so that it is possible to produce projections from 1997 to 2006 and 
compare them with the realized values of the metric of interest. 

- graphical results. 
 

Figure 11 – Backtesting on life expectancy in LC and PSB 
 
 Figure 11 shows the results of the backtesting procedure; in it we compare the actual 
 expectancy of life at birth, calculated on the realized mortality dataset for an Italian male 
 ranging from 1980 to 2006, with  those obtained with a backtesting on the Lee Carter model 
 and the panel sieve boostrap. We observe that, even though both models produce a well- 
 known underestimation of the life expectancy, the projections achieved with the panel sieve 
 bootstrap are closer to the actual values, due to a wider projection interval.  
  
 

6. Concluding Remarks 

 

The complex structure of the longevity phenomenon means that, in order to produce reliable 
projections of mortality indices, the interactions between age and time cannot be neglected. 
Ignoring dependency risk (D’Amato et al. 2012) would lead to an inefficient risk management 
strategy for insurance companies.  
In particular, the presence of spatial dependence across age and time leads to a systematic 

over-estimation or under-estimation of uncertainty in the estimates, caused by whether 

negative or positive dependence dominates (Liu et al. 2010). 
As is well-known in the demographic literature, the Lee Carter model has become the seminal 

statistical model for projections of mortality. To obtain a measurement of the uncertainty in 

the forecasted mortality rates, reliable confidence intervals for the quantities of interest 

connected to the phenomenon under consideration can be calculated on the basis of simulation 

techniques. 
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Nevertheless, we propose a method which leads to a prudent measure of longevity risk, 

avoiding the structural incompleteness of the ordinary simulation bootstrap methodology 

which involves the assumption of independence. The algorithm that we have studied 
combines model-based predictions in Lee Carter framework (1992) with a bootstrap 
procedure for dependent data, and so both the historical parametric structure and the intra-
group error correlation structure are preserved. D’Amato et al. (2012) apply a sieve bootstrap 
to the residuals of the Lee Carter model, according to the design of the typical autoregressive 
sieve bootstrap. According to this scheme, we develop a Panel Sieve Bootstrap in the Lee 
Carter setting, and are able to reproduce in the sampling the dependence structure that exists 
between the years of the dataset for each age. The methodology is sufficiently flexible to be 

extended to the whole family of the Lee Carter models in order to take into account additional 

issues. In particular one important question is represented by the cohort effect. In this paper, 
the benefit of introducing the cohort effect has not been studied, but certainly deserves a 
deeper investigation. Nevertheless, the method we have proposed, which utilises the basic 
version of the Lee Carter model, can incorporate a consideration of the cohort effect. In this 
context, the literature recognises the desirable properties and the good performance of the 
Renshaw and Haberman (2006) model which incorporates the cohort effect in the Lee Carter 
model. In this context, the literature recognises the desirable properties and the good 

performances of the Renshaw and Haberman Lee Carter version (2006) which allows for 

cohort effect.  
Another additional issue to address is the higher variability in the older age groups due to 

small sample size, that influences the accuracy in the mortality. Hyndman and Ullah (2007) 

show a particular version of the LC methodology based on the combination of functional data 

analysis and nonparametric smoothing and D’Amato et al (2011c) offer a comparative 
analysis of LC and the Hyndman Ullah version. Further analysis could combine smoothing 

techniques and bootstrap procedure in the mortality setting to improve beyond the forecasts.  
Future research will focus on detecting the dependence across different populations. The 
investigation about the factors driving changes in mortality, in particular across countries, 
requires us to handle the related high dimensional data question. The high dimensionality 
refers to the total number of data ‘cells’ that are modeled, and this is equal to the product of 
the numbers of categories for the factors classifying the data.  
In order to address the dimensionality problem by extracting age patterns from the data we 
will take into account principal components approaches in future work.  
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   Figure 1- log death rates - Italian male population, age: from 0 to 100 (the upper curve 
   represents the year 1980 while the lowest curve shows the rates for 2006) 
 

 
 

 
 Figure 2- ax, bx, kt adjusted, basic Lee Carter model - Italian male population, age: from 0 to 100 
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Figure 3- Residuals year vs age – basic Lee Carter model -Italian male population, age: from 0 to 100 
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Figure 4- Autocorrelation function of the residuals by age 
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Figure 5 - Autocorrelation function of the residuals by time 
 
 
 

 
 

Figure 6 - Pearson’s correlation coefficient  on the residuals - contour map 
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Figure 7 – Simulated paths for ax –  Residual Bootstrap and Panel Sieve Bootstrap 

 

 

 
Figure 8 - Simulated paths for bx – Residual Bootstrap and Panel Sieve Bootstrap 

 
 
 
 

 

 
 

Figure 9 - Simulated paths for kt – Residual Bootstrap and Panel Sieve Bootstrap 
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Figure 10 - Forecasted kt – Residual Bootstrap and Panel Sieve Bootstrap 

 

 

      

 
Figure 11 – Backtesting on life expectancy 

 



 
 

Ljung-Box test 
 

x=age X-squared, 

df=10 

p-value x=age X-squared, 

df=10 

p-value x=age X-squared, 

df=10 

p-value x=age X-squared, 

df=10 

p-value 

0 171.4472 < 2.2e-16 26 143.561 < 2.2e-16 52 85.7832 3.653e-14 78 20.5523 0.02444 

1 218.2905 < 2.2e-16 27 144.3126 < 2.2e-16 53 50.4564 2.2e-07 79 15.0216 0.1313 

2 214.1386 < 2.2e-16 28 168.4717 < 2.2e-16 54 40.0539 1.658e-05 80 20.5557 0.02441 

3 212.4354 < 2.2e-16 29 157.1803 < 2.2e-16 55 44.725 2.438e-06 81 21.3561 0.01874 

4 174.1954 < 2.2e-16 30 154.4508 < 2.2e-16 56 70.2763 3.921e-11 82 20.9374 0.02153 

5 133.0718 < 2.2e-16 31 162.6379 < 2.2e-16 57 77.6903 1.422e-12 83 6.409 0.7798 

6 118.8049 < 2.2e-16 32 150.9264 < 2.2e-16 58 74.802 5.199e-12 84 16.3974 0.08881 

7 133.5848 < 2.2e-16 33 163.961 < 2.2e-16 59 84.6718 6.062e-14 85 13.3461 0.205 

8 55.0495 3.091e-08 34 152.1727 < 2.2e-16 60 87.3811 1.765e-14 86 14.0861 0.1691 

9 90.1288 4.996e-15 35 156.5525 < 2.2e-16 61 95.115 5.551e-16 87 20.9962 0.02112 

10 117.0806 2.2e-16 36 141.9757 < 2.2e-16 62 105.7261 < 2.2e-16 88 21.4929 0.01791 

11 73.7842 8.2e-12 37 137.5273 < 2.2e-16 63 99.1519 < 2.2e-16 89 28.552 0.001472 

12 126.8546 < 2.2e-16 38 133.7374 < 2.2e-16 64 107.2912 < 2.2e-16 90 21.2368 0.0195 

13 94.2806 7.772e-16 39 115.5826 < 2.2e-16 65 108.3895 < 2.2e-16 91 24.1413 0.007234 

14 47.1129 9.007e-07 40 135.2164 < 2.2e-16 66 100.9233 < 2.2e-16 92 27.0711 0.002538 

15 56.4433 1.695e-08 41 80.119 4.757e-13 67 105.7413 < 2.2e-16 93 26.1229 0.003578 

16 11.8187 0.2974 42 67.1395 1.576e-10 68 98.1969 < 2.2e-16 94 18.2301 0.0512 

17 31.9824 0.0004031 43 49.8749 2.814e-07 69 89.2363 7.55e-15 95 20.8646 0.02206 

18 18.6092 0.04552 44 55.8906 2.152e-08 70 82.5403 1.592e-13 96 37.5233 4.593e-05 

19 38.2392 3.448e-05 45 35.8041 9.096e-05 71 67.5697 1.303e-10 97 26.8398 0.002761 

20 79.3661 6.682e-13 46 48.9972 4.078e-07 72 100.8786 < 2.2e-16 98 14.9058 0.1355 

21 53.1234 7.063e-08 47 56.3886 1.736e-08 73 74.967 4.829e-12 99 15.0975 0.1285 

22 58.857 5.96e-09 48 38.7686 2.787e-05 74 91.887 2.22e-15 100 20.8864 0.0219 

23 83.4226 1.068e-13 49 28.0167 0.001794 75 63.2996 8.561e-10    

24 146.1879 < 2.2e-16 50 48.7136 4.596e-07 76 49.4813 3.324e-07    

25 140.6023 < 2.2e-16 51 47.4033 7.974e-07 77 41.8919 7.838e-06    

 

Table 1 - Ljung-Box test on the residuals 
 

 

Pearson’s correlation coefficient 
 

x=age Value x=age Value x=age Value 

0,1 0.9249975 
25,26 

0.8967373 
51,52 

0.5762156 

1,2 0.9593225 
26,27 

0.9136936 
52,53 

0.608357 

2,3 0.9616913 
27,28 

0.8928995 
53,54 

0.6347328 

3,4 0.91959 
28,29 

0.8973545 
54,55 

0.5896141 

4,5 0.8337363 
29,3 

0.9353529 
55,56 

0.4981563 

5,6 0.8806236 
30,31 

0.9362392 
56,57 

0.5836698 

6,7 0.7955352 
31,32 

0.9336044 
57,58 

0.6220767 

7,8 0.7433184 
32,33 

0.940451 
58,59 

0.6545007 

8,9 0.6569047 
33,34 

0.9311992 
59,6 

0.714403 

9,10 0.6516526 
34,35 

0.9343669 
60,61 

0.7304692 

11,12 0.6837091 
35,36 

0.9261032 
61,62 

0.7586733 

Table



12,13 0.6134128 
36,37 

0.8973486 
62,63 

0.8151193 

13,14 0.7446103 
37,38 

0.880285 
63,64 

0.8005696 

14,15 0.6364435 
38,39 

0.8352225 
64,65 

0.8044449 

15,16 0.5834051 
39,40 

0.8086334 
65,66 

0.8336427 

16,17 0.161985 
40,41 

0.853257 
66,67 

0.821401 

17,18 0.6298621 
41,42 

0.6992298 
67,68 

0.8329737 

18,19 0.3826222 
42,43 

0.6305726 
68,69 

0.7977524 

19,20 0.6161803 
43,44 

0.6976953 
69,7 

0.7648516 

20,21 0.537574 
44,45 

0.6622836 
70,71 

0.7532988 

21,22 0.7511346 
45,46 

0.5847089 
71,72 

0.7505663 

22,23 0.6995258 
46,47 

0.5756761 
72,73 

0.7210286 

23,24 0.7612173 
47,48 

0.564031 
73,74 

0.7078396 

24,25 
0.82023 

48,49 
0.4790489 

74,75 
0.692018 

 
Table 2 - Pearson’s correlation coefficient test on the residuals 

 

 
 

 

 
Table 3 – Comparison among Residual Sieve Bootstrap (RSB) and Panel Sieve Bootstrap (PSB), 
B=100 

 
 
 

 
 

 
Table 4 – Comparison among Residual Bootstrap and Panel Sieve Bootstrap, in terms of the 
difference between 95% and 5%, B=100 

 
 

k h 1 2 3 4 5 6 7 8 9 10 

RSB 
95% -34,8267 -37,4444 -39,8900 -42,3531 -44,8069 -47,2672 -49,7144 -52,1682 -54,6224 -57,0763 

5% -38,1847 -41,4835 -43,7844 -46,3902 -48,8436 -51,4966 -53,9663 -56,6517 -59,1648 -61,7945 

PSB 
95% -34,7849 -37,3747 -39,7985 -42,2644 -44,6976 -47,1526 -49,6018 -52,0752 -54,5231 -56,9483 

5% -38,3525 -41,5316 -43,9232 -46,4729 -49,0212 -51,5929 -54,0779 -56,7117 -59,2265 -61,8516 

 
 

Table 5 – Comparison among Residual Bootstrap and Panel Sieve Bootstrap, B=500 
 
 
 
 
 

k h 1 2 3 4 5 6 7 8 9 10 

RSB 
95% -35,1029 -37,8412 -40,2909 -42,7406 -45,1903 -47,6399 -50,0896 -52,5393 -54,9890 -57,4386 

5% -37,9485 -41,6024 -43,6126 -46,3549 -48,7447 -51,4305 -53,9951 -56,6297 -59,2171 -61,8310 

PSB 
95% -34,4772 -37,3907 -39,9745 -42,2592 -44,7042 -47,1557 -49,5995 -52,0901 -54,4603 -56,9359 

5% -38,3828 -41,2725 -43,8084 -46,3553 -48,8723 -51,5311 -54,0284 -56,7043 -59,2498 -61,8862 

d=percentile 

difference 1 2 3 4 5 6 7 8 9 10 

RSB 2,8457 3,7611 3,3217 3,6143 3,5544 3,7906 3,9055 4,0904 4,2281 4,3923 

PSB 3,9057 3,8819 3,8339 4,0962 4,1680 4,3754 4,4289 4,6142 4,7895 4,9503 



 
 

d=percentile difference 1 2 3 4 5 6 7 8 9 10 

RSB 3,3580 4,0391 3,8944 4,0370 4,0367 4,2294 4,2518 4,4835 4,5424 3,3580 

PSB 3,5676 4,1569 4,1246 4,2085 4,3236 4,4402 4,4761 4,6365 4,7034 3,5676 

 
 

Table 6– Comparison among Residual Bootstrap and Panel Sieve Bootstrap, in terms of the 
difference between 95% and 5%, B=500 

 
 

 
Table 7– Comparison among Residual Bootstrap and Panel Sieve Bootstrap, B=1000 

 
 
 
 
 
 

d=percentile difference 1 2 3 4 5 6 7 8 9 10 

RSB 3,4821 4,0036 3,9035 4,0555 3,9567 4,2546 4,2173 4,3972 4,4543 4,5777 

PSB 3,7804 4,3426 4,1686 4,3719 4,3808 4,6324 4,6186 4,8770 4,8451 4,9861 

 
 
 

Table 8– Comparison among Residual Bootstrap and Panel Sieve Bootstrap, in terms of the 
difference between 95% and 5%, B=1000 

 

 
 

 
 
Table 9– Comparison among Lee Carter and Panel Sieve bootstrap in terms of forecast accuracy 

 

 
 

 

  

 

 

 

 

 

k h 1 2 3 4 5 6 7 8 9 10 

RSB 
95% -34,8927 -37,6057 -40,0222 -42,5391 -44,9649 -47,4626 -49,8737 -52,3705 -54,8035 -57,2775 

5% -38,3747 -41,6093 -43,9257 -46,5947 -48,9216 -51,7172 -54,0910 -56,7676 -59,2577 -61,8552 

PSB 
95% -34,7843 -37,3706 -39,7948 -42,2834 -44,7101 -47,1804 -49,6229 -52,0777 -54,5262 -56,9918 

5% -38,5647 -41,7132 -43,9634 -46,6553 -49,0909 -51,8127 -54,2415 -56,9547 -59,3713 -61,9779 


