309 research outputs found

    Spatial repartition of local plastic processes in different creep regimes in a granular material

    Get PDF
    Granular packings under constant shear stress display below the Coulomb limit, a logarithmic creep dynamics. However the addition of small stress modulations induces a linear creep regime characterized by an effective viscous response. Using Diffusing Wave Spectroscopy, we investigate the relation between creep and local plastic events spatial distribution ("hot-spots") contributing to the plastic yield. The study is done in the two regimes, i.e. with and without mechanical activation. The hot-spot dynamics is related to the material effective fluidity. We show that far from the threshold, a local visco-elastic rheology coupled to an ageing of the fluidity parameter, is able to render the essential spatio-temporal features of the observed creep dynamics

    Experimental velocity fields and forces for a cylinder penetrating into a granular medium

    Get PDF
    We present here a detailed granular flow characterization together with force measurements for the quasi-bidimensional situation of a horizontal cylinder penetrating vertically at a constant velocity in dry granular matter between two parallel glass walls. In the velocity range studied here, the drag force on the cylinder does not depend on the velocity V_0 and is mainly proportional to the cylinder diameter d. Whereas the force on the cylinder increases with its penetration depth, the granular velocity profile around the cylinder is found stationary with fluctuations around a mean value leading to the granular temperature profile. Both mean velocity profile and temperature profile exhibit strong localization near the cylinder. The mean flow perturbation induced by the cylinder decreases exponentially away from the cylinder on a characteristic length \lambda, that is mainly governed by the cylinder diameter for large enough cylinder/grain size ratio d/d_g: \lambda ~ d/4 + 2d_g. The granular temperature exhibits a constant plateau value T_0 in a thin layer close to the cylinder of extension \delta_{T_0} ~ \lambda/2 and decays exponentially far away with a characteristic length \lambda_T of a few grain diameters (\lambda_T ~ 3d_g). The granular temperature plateau T_0 that scales as (V_0^2 d_g/d) is created by the flow itself from the balance between the "granular heat" production by the shear rate V_0/\lambda over \delta_{T_0} close to the cylinder and the granular dissipation far away

    Aftershocks as a time independant phenomenon

    Full text link
    Sequences of aftershocks following Omori's empirical law are observed after most major earthquakes, as well as in laboratory-scale fault-mimicking experiments. Nevertheless, the origin of this memory effect is still unclear. In this letter, we present an analytical framework for treating labquake and earthquake catalogs on an equal footing. Using this analysis method, we show that when memory is considered to be in deformation and not in time, all data collapse onto a single master curve, showing that the timescale is entirely fixed by the inverse of the strain rate

    Quantifying the Reversible Association of Thermosensitive Nanoparticles

    Get PDF
    Under many conditions, biomolecules and nanoparticles associate by means of attractive bonds, due to hydrophobic attraction. Extracting the microscopic association or dissociation rates from experimental data is complicated by the dissociation events and by the sensitivity of the binding force to temperature (T). Here we introduce a theoretical model that combined with light-scattering experiments allows us to quantify these rates and the reversible binding energy as a function of T. We apply this method to the reversible aggregation of thermoresponsive polystyrene/poly(N-isopropylacrylamide) core-shell nanoparticles, as a model system for biomolecules. We find that the binding energy changes sharply with T, and relate this remarkable switchable behavior to the hydrophobic-hydrophilic transition of the thermosensitive nanoparticles

    Acid/base-triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes.

    Get PDF
    Electronic circular dichroism and circularly polarized luminescence acid/base switching activity has been demonstrated in helicene-bipyridine proligand 1 a and in its “rollover” cycloplatinated derivative 2 a. Whereas proligand 1 a displays a strong bathochromic shift (>160 nm) of the nonpolarized and circularly polarized luminescence upon protonation, complex 2 a displays slightly stronger emission. This strikingly different behavior between singlet emission in the organic helicene and triplet emission in the organometallic derivative has been rationalized by using quantum-chemical calculations. The very large bathochromic shift of the emission observed upon protonation of azahelicene-bipyridine 1 a has been attributed to the decrease in aromaticity (promoting a charge-transfer-type transition rather than a π–π* transition) as well as an increase in the HOMO–LUMO character of the transition and stabilization of the LUMO level upon protonation

    A new capacitive sensor for displacement measurement in a surface force apparatus

    Full text link
    We present a new capacitive sensor for displacement measurement in a Surface Forces Apparatus (SFA) which allows dynamical measurements in the range of 0-100 Hz. This sensor measures the relative displacement between two macroscopic opaque surfaces over periods of time ranging from milliseconds to in principle an indefinite period, at a very low price and down to atomic resolution. It consists of a plane capacitor, a high frequency oscillator, and a high sensitivity frequency to voltage conversion. We use this sensor to study the nanorheological properties of dodecane confined between glass surfaces.Comment: 7 pages, 8 figure

    Granular Flows in Split-Bottom Geometries

    Full text link
    There is a simple and general experimental protocol to generate slow granular flows that exhibit wide shear zones, qualitatively different from the narrow shear bands that are usually observed in granular materials . The essence is to drive the granular medium not from the sidewalls, but to split the bottom of the container that supports the grains in two parts and slide these parts past each other. Here we review the main features of granular flows in such split-bottom geometries.Comment: 8 pages, 10 figures, accepted for Soft Matte

    Aging in humid granular media

    Full text link
    Aging behavior is an important effect in the friction properties of solid surfaces. In this paper we investigate the temporal evolution of the static properties of a granular medium by studying the aging over time of the maximum stability angle of submillimetric glass beads. We report the effect of several parameters on these aging properties, such as the wear on the beads, the stress during the resting period, and the humidity content of the atmosphere. Aging effects in an ethanol atmosphere are also studied. These experimental results are discussed at the end of the paper.Comment: 7 pages, 9 figure

    Giant tunnel electroresistance with PbTiO3 ferroelectric tunnel barriers

    Get PDF
    The persistency of ferroelectricity in ultrathin films allows their use as tunnel barriers. Ferroelectric tunnel junctions are used to explore the tunneling electroresistance effect—a change in the electrical resistance associated with polarization reversal in the ferroelectric barrier layer—resulting from the interplay between ferroelectricity and quantum-mechanical tunneling. Here, we use piezoresponse force microscopy and conductive-tip atomic force microscopy at room temperature to demonstrate the resistive readout of the polarization state through its influence on the tunnel current in PbTiO3 ultrathin ferroelectric films. The tunnel electroresistance reaches values of 50 000% through a 3.6 nm PbTiO3 film.

    Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid

    Full text link
    When a phase-separated binary (A+BA+B) mixture is exposed to a wall, that preferentially attracts one of the components, interfaces between A-rich and B-rich domains in general meet the wall making a contact angle θ\theta. Young's equation describes this angle in terms of a balance between the ABA-B interfacial tension γAB\gamma_{AB} and the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} between, respectively, the AA- and BB-rich phases and the wall, γABcosθ=γwAγwB\gamma _{AB} \cos \theta =\gamma_{wA}-\gamma_{wB}. By Monte Carlo simulations of bridges, formed by one of the components in a binary Lennard-Jones liquid, connecting the two walls of a nanoscopic slit pore, θ\theta is estimated from the inclination of the interfaces, as a function of the wall-fluid interaction strength. The information on the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} are obtained independently from a new thermodynamic integration method, while γAB\gamma_{AB} is found from the finite-size scaling analysis of the concentration distribution function. We show that Young's equation describes the contact angles of the actual nanoscale interfaces for this model rather accurately and location of the (first order) wetting transition is estimated.Comment: 6 pages, 6 figure
    corecore