264 research outputs found

    The Survival Rate of Ejected Terrestrial Planets with Moons

    Full text link
    During planet formation, a gas giant will interact with smaller protoplanets that stray within its sphere of gravitational influence. We investigate the outcome of interactions between gas giants and terrestrial-sized protoplanets with lunar-sized companions. An interaction between a giant planet and a protoplanet binary may have one of several consequences, including the delivery of volatiles to the inner system, the capture of retrograde moons by the giant planet, and the ejection of one or both of the protoplanets. We show that an interesting fraction of terrestrial-sized planets with lunar sized companions will likely be ejected into interstellar space with the companion bound to the planet. The companion provides an additional source of heating for the planet from tidal dissipation of orbital and spin angular momentum. This heat flux typically is larger than the current radiogenic heating of the Earth for up to the first few hundred million years of evolution. In combination with an atmosphere of sufficient thickness and composition, the heating can provide the conditions necesary for liquid water to persist on the surface of the terrestrial mass planet, making it a potential site for life. We also determine the possibility for directly detecting such systems through all-sky infrared surveys or microlensing surveys. Microlensing surveys in particular will directly measure the frequency of this phenomenon.Comment: 4 pages, 2 figures, Accepted to ApJ

    Studies of heat source driven natural convection

    Get PDF
    Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes

    Structure and phase boundaries of compressed liquid hydrogen

    Full text link
    We have mapped the molecular-atomic transition in liquid hydrogen using first principles molecular dynamics. We predict that a molecular phase with short-range orientational order exists at pressures above 100 GPa. The presence of this ordering and the structure emerging near the dissociation transition provide an explanation for the sharpness of the molecular-atomic crossover and the concurrent pressure drop at high pressures. Our findings have non-trivial implications for simulations of hydrogen; previous equation of state data for the molecular liquid may require revision. Arguments for the possibility of a 1st1^{st} order liquid-liquid transition are discussed

    The potential for tidally heated icy and temperate moons around exoplanets

    Get PDF
    Moons of giant planets may represent an alternative to the classical picture of habitable worlds. They may exist within the circumstellar habitable zone of a parent star, and through tidal energy dissipation they may also offer alternative habitable zones, where stellar insolation plays a secondary, or complementary, role. We investigate the potential extent of stable satellite orbits around a set of 74 known extrasolar giant planets located beyond 0.6 AU from their parent stars - where moons should be long-lived with respect to removal by stellar tides. Approximately 60% of these giant planets can sustain satellites or moons in bands up to 0.04\sim 0.04 AU in width. For comparison, the Galiean satellites extend to 0.013\sim 0.013 AU. We investigate the stellar insolation that moons would experience for these exoplanet systems, and the implications for sublimation loss of volatiles. We find that between 15 and 27% of {\em all} known exoplanets may be capable of harboring small, icy, moons. In addition, some 22-28% of all known exoplanets could harbor moons within a ``sublimation zone'', with insolation temperatures between 273 K and 170 K. A simplified energy balance model is applied to the situation of temperate moons, maintained by a combination of stellar insolation and tidal heat flow. We demonstrate that large moons (>0.1>0.1 M_{\oplus}), at orbital radii commensurate with those of the Galilean satellites, could maintain temperate, or habitable, surface conditions during episodes of tidal heat dissipation of the order 1-100 times that currently seen on Io. (Abridged).Comment: 28 pages, 8 Figures, AASTex, Accepted for publication in the Astrophysical Journa

    Mercury

    Get PDF
    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history

    Amplification of MHD waves in swirling astrophysical flows

    Full text link
    Recently it was found that helical magnetized flows efficiently amplify Alfv\'en waves (Rogava et al. 2003, A&A, v.399, p.421). This robust and manifold nonmodal effect was found to involve regimes of transient algebraic growth (for purely ejectional flows), and exponential instabilities of both usual and parametric nature. However the study was made in the incompressible limit and an important question remained open - whether this amplification is inherent to swirling MHD flows per se and what is the degree of its dependence on the incompressibility condition. In this paper, in order to clear up this important question, we consider full compressible spectrum of MHD modes: Alfv\'en waves (AW), slow magnetosonic waves (SMW) and fast magnetosonic waves (FMW). We find that helical flows inseparably blend these waves with each other and make them unstable, creating the efficient energy transfer from the mean flow to the waves. The possible role of these instabilities for the onset of the MHD turbulence, self-heating of the flow and the overall dynamics of astrophysical flows are discussed.Comment: 8 pages, 9 figures, accepted for publication (18.03.2003) in the "Astronomy and Astrophysics

    Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk

    Full text link
    We present sub-arcsecond images of AB Auriga obtained with the IRAM Plateau de Bure interferometer in the isotopologues of CO, and in continuum at 3 and 1.3 mm. Instead of being centrally peaked, the continuum emission is dominated by a bright, asymmetric (spiral-like) feature at about 140 AU from the central star. The large scale molecular structure suggests the AB Aur disk is inclined between 23 and 43 degrees, but the strong asymmetry of the continuum and molecular emission prevents an accurate determination of the inclination of the inner parts. We find significant non-Keplerian motion, with a best fit exponent for the rotation velocity law of 0.41 +/- 0.01, but no evidence for radial motions. The disk has an inner hole about 70 AU in radius. The disk is warm and shows no evidence of depletion of CO. The dust properties suggest the dust is less evolved than in typical T Tauri disks. Both the spiral-like feature and the departure from purely Keplerian motions indicates the AB Aur disk is not in quasi-equilibrium. Disk self-gravity is insufficient to create the perturbation. This behavior may be related either to an early phase of star formation in which the Keplerian regime is not yet fully established and/or to a disturbance of yet unknown origin. An alternate, but unproven, possibility is that of a low mass companion located about 40 AU from AB Aur.Comment: 10 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Evolution of oxygen isotopic composition in the inner solar nebula

    Full text link
    Changes in the chemical and isotopic composition of the solar nebula with time are reflected in the properties of different constituents that are preserved in chondritic meteorites. CR carbonaceous chondrites are among the most primitive of all chondrite types and must have preserved solar nebula records largely unchanged. We have analyzed the oxygen and magnesium isotopes in a range of the CR constituents of different formation temperatures and ages, including refractory inclusions and chondrules of various types. The results provide new constraints on the time variation of the oxygen isotopic composition of the inner (<5 AU) solar nebula - the region where refractory inclusions and chondrules most likely formed. A chronology based on the decay of short-lived 26Al (t1/2 ~ 0.73 Ma) indicates that the inner solar nebula gas was 16O-rich when refractory inclusions formed, but less than 0.8 Ma later, gas in the inner solar nebula became 16O-poor and this state persisted at least until CR chondrules formed ~1-2 Myr later. We suggest that the inner solar nebula became 16O-poor because meter-size icy bodies, which were enriched in 17,18O due to isotopic self-shielding during the ultraviolet photo dissociation of CO in the protosolar molecular cloud or protoplanetary disk, agglomerated outside the snowline, drifted rapidly towards the Sun, and evaporated at the snowline. This led to significant enrichment in 16O-depleted water, which then spread through the inner solar system. Astronomical studies of the spatial and/or temporal variations of water abundance in protoplanetary disks may clarify these processes.Comment: 27 pages, 5 figure

    A VLA search for young protostars embedded in dense cores

    Get PDF
    Four dense cores, L1582A, L1689A, B133 and B68, classified as prestellar in terms of the absence of detectable NIR emission, are observed at radio wavelengths to investigate whether they nurture very young protostars. No definite young protostars were discovered in any of the four cores observed. A few radio sources were discovered close to the observed cores, but these are most likely extragalactic sources or YSOs unrelated to the cores observed. In L1582A we discovered a weak radio source near the centre of the core with radio characteristics and offset from the peak of the submillimeter emission similar to that of the newly discovered protostar in the core L1014, indicating a possible protostellar nature for this source. This needs to be confirmed with near- and/or mid-infrared observations (e.g. with Spitzer). Hence based on the current observations we are unable to confirm unequivocally that L1582A is starless. In L1689A a possible 4.5-sigma radio source was discovered at the centre of the core, but needs to be confirmed with future observations. In B133 a weak radio source, possibly a protostar, was discovered at the edge of the core on a local peak of the core submm emission, but no source was detected at the centre of the core. Thus, B133 is probably starless, but may have a protostar at its edge. In B68 no radio sources were discovered inside or at the edge of the core, and thus B68 is indeed starless. Four more radio sources with spectral indices characteristic of young protostars were discovered outside the cores but within the extended clouds in which these cores reside. Conclusions: We conclude that the number of cores misclassified as prestellar is probably very small and does not significantly alter the estimated lifetime of the prestellar phase.Comment: Accepted by A&

    A deeply embedded young protoplanetary disk around L1489 IRS observed by the submillimeter array

    Full text link
    Circumstellar disks are expected to form early in the process that leads to the formation of a young star, during the collapse of the dense molecular cloud core. It is currently not well understood at what stage of the collapse the disk is formed or how it subsequently evolves. We aim to identify whether an embedded Keplerian protoplanetary disk resides in the L1489 IRS system. Given the amount of envelope material still present, such a disk would respresent a very young example of a protoplanetary disk. Using the Submillimeter Array (SMA) we have observed the HCO+^+ J=J= 3--2 line with a resolution of about 1''. At this resolution a protoplanetary disk with a radius of a few hundred AUs should be detectable, if present. Radiative transfer tools are used to model the emission from both continuum and line data. We find that these data are consistent with theoretical models of a collapsing envelope and Keplerian circumstellar disk. Models reproducing both the SED and the interferometric continuum observations reveal that the disk is inclined by 40^\circ which is significantly different to the surrounding envelope (74^\circ). This misalignment of the angular momentum axes may be caused by a gradient within the angular momentum in the parental cloud or if L1489 IRS is a binary system rather than just a single star. In the latter case, future observations looking for variability at sub-arcsecond scales may be able to constrain these dynamical variations directly. However, if stars form from turbulent cores, the accreting material will not have a constant angular momentum axis (although the average is well defined and conserved) in which case it is more likely to have a misalignment of the angular momentum axes of the disk and the envelope.Comment: 11 pages, 13 figures, accepted by A&
    corecore