85 research outputs found

    Standard methods for Apis mellifera anatomy and dissection

    Get PDF
    An understanding of the anatomy and functions of internal and external structures is fundamental to many studies on the honey bee Apis mellifera. Similarly, proficiency in dissection techniques is vital for many more complex procedures. In this paper, which is a prelude to the other papers of the COLOSS BEEBOOK, we outline basic honey bee anatomy and basic dissection techniques

    Neonicotinoid residues in UK honey despite European Union moratorium

    Get PDF
    Due to concerns over negative impacts on insect pollinators, the European Union has implemented a moratorium on the use of three neonicotinoid pesticide seed dressings for mass-flowering crops. We assessed the effectiveness of this policy in reducing the exposure risk to honeybees by collecting 130 samples of honey from bee keepers across the UK before (2014: N = 21) and after the moratorium was in effect (2015: N = 109). Neonicotinoids were present in about half of the honey samples taken before the moratorium, and they were present in over a fifth of honey samples following the moratorium. Clothianidin was the most frequently detected neonicotinoid. Neonicotinoid concentrations declined from May to September in the year following the ban. However, the majority of post-moratorium neonicotinoid residues were from honey harvested early in the year, coinciding with oilseed rape flowering. Neonicotinoid concentrations were correlated with the area of oilseed rape surrounding the hive location. These results suggest mass flowering crops may contain neonicotinoid residues where they have been grown on soils contaminated by previously seed treated crops. This may include winter seed treatments applied to cereals that are currently exempt from EU restrictions. Although concentrations of neonicotinoids were low (<2.0 ng g-1), and posed no risk to human health, they may represent a continued risk to honeybees through long-term chronic exposure

    Introducing the INSIGNIA project: environmental monitoring of pesticide use through honey bees

    Get PDF
    INSIGNIA aims to design and test an innovative, non-invasive, scientifically proven citizen science environmental monitoring protocol for the detection of pesticides by honey bees. It is a 30-month pilot project initiated and financed by the EC (PP-1-1-2018; EC SANTE). The study is being carried out by a consortium of specialists in honey bees, apiculture, statistics, analytics, modelling, extension, social science and citizen science from twelve countries. Honey bee colonies are excellent bio-samplers of biological material such as nectar, pollen and plant pathogens, as well as non-biological material such as pesticides or airborne contamination. Honey bee colonies forage over a circle of 1 km radius, increasing to several km if required, depending on the availability and attractiveness of food. All material collected is accumulated in the hive.The honey bee colony can provide four main matrices for environmental monitoring: bees, honey, pollen and wax. Because of the non-destructive remit of the project, for pesticides, pollen is the focal matrix and used as trapped pollen and beebread in this study. Although beeswax can be used as a passive sampler for pesticides, this matrix is not being used in INSIGNIA because of its polarity dependent absorbance, which limits the required wide range of pesticides to be monitored. Alternatively, two innovative non-biological matrices are being tested: i) the “Beehold tube”, a tube lined with the generic absorbent polyethylene-glycol PEG, through which hive-entering bees are forced to pass, and ii) the “APIStrip” (Absorbing Pesticides In-hive Strips) with a specific pesticide absorbent which is hung between the bee combs.Beebread and pollen collected in pollen traps are being sampled every two weeks to be analysed for pesticide residues and to record foraging conditions. Trapped pollen provides snapshots of the foraging conditions and contaminants on a single day. During the active season, the majority of beebread is consumed within days, so beebread provides recent, random sampling results. The Beehold tube and the APIStrips are present throughout the 2-weeks sampling periods in the beehive, absorbing and accumulating the incoming contaminants. The four matrices i.e. trapped pollen, beebread, Beehold tubes and APIStrips will be analysed for the presence of pesticides. The botanical origin of trapped pollen, beebread and pollen in the Beehold tubes will also be determined with an innovative molecular technique. Data on pollen and pesticide presence will then be combined to obtain information on foraging conditions and pesticide use, together with evaluation of the CORINE database for land use and pesticide legislation to model the exposure risks to honey bees and wild bees. All monitoring steps from sampling through to analysis will be studied and rigorously tested in four countries in Year 1, and the best practices will then be ring-tested in nine countries in Year 2. Information about the course of the project, its results and publications will be available on the INSIGNIA website www.insignia-bee.eu and via social media: on Facebook (https://www.facebook.com/insigniabee.eu/); Instagram insignia_bee); and Twitter (insignia_bee). Although the analyses of pesticide residues and pollen identification will not be completed until December 2019, in my talk I will present preliminary results of the Year 1 sampling.info:eu-repo/semantics/publishedVersio

    Introducing the INSIGNIA project: Environmental monitoring of pesticides use through honey bees

    Get PDF
    INSIGNIA aims to design and test an innovative, non-invasive, scientifically proven citizen science environmental monitoring protocol for the detection of pesticides via honey bees. It is a pilot project initiated and financed by the European Commission (PP-1-1-2018; EC SANTE). The study is being carried out by a consortium of specialists in honey bees, apiculture, chemistry, molecular biology, statistics, analytics, modelling, extension, social science and citizen science from twelve countries. Honey bee colonies are excellent bio-samplers of biological material such as nectar, pollen and plant pathogens, as well as non-biological material such as pesticides or airborne contamination. Honey bee colonies forage over a circle of about 1 km radius, increasing to several km if required depending on the availability and attractiveness of food. All material collected is concentrated in the hive, and the honey bee colony can provide four main matrices for environmental monitoring: bees, honey, pollen and wax. For pesticides, pollen and wax are the focal matrices. Pollen collected in pollen traps will be sampled every two weeks to record foraging conditions. During the season, most of pollen is consumed within days, so beebread can provide recent, random sampling results. On the other hand wax acts as a passive sampler, building up an archive of pesticides that have entered the hive. Alternative in-hive passive samplers will be tested to replicate wax as a “pesticide-sponge”. Samples will be analysed for the presence of pesticides and the botanical origin of the pollen using an ITS2 DNA metabarcoding approach. Data on pollen and pesticides will be then be combined to obtain information on foraging conditions and pesticide use, together with evaluation of the CORINE database for land use and pesticide legislation to model the exposure risks to honey bees and wild bees. All monitoring steps from sampling through to analysis will be studied and tested in four countries in year 1, and the best practices will then be ring-tested in nine countries in year 2. Information about the course of the project and its results and publications will be available in the INSIGNIA website www.insignia-bee.eu.info:eu-repo/semantics/publishedVersio

    Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze

    Get PDF
    Pesticides, including neonicotinoids, typically target pest insects by being neurotoxic. Inadvertent exposure to foraging insect pollinators is usually sub-lethal, but may affect cognition. One cognitive trait, spatial working memory, may be important in avoiding previously-visited flowers and other spatial tasks such as navigation. To test this, we investigated the effect of acute thiamethoxam exposure on spatial working memory in the bumblebee Bombus terrestris, using an adaptation of the radial-arm maze (RAM). We first demonstrated that bumblebees use spatial working memory to solve the RAM by showing that untreated bees performed significantly better than would be expected if choices were random or governed by stereotyped visitation rules. We then exposed bees to either a high sub-lethal positive control thiamethoxam dose (2.5ng-1 bee), or one of two low doses (0.377 or 0.091ng-1) based on estimated field-realistic exposure. The high dose caused bees to make more and earlier spatial memory errors and take longer to complete the task than unexposed bees. For the low doses, the negative effects were smaller but statistically significant, and dependent on bee size. The spatial working memory impairment shown here has the potential to harm bees exposed to thiamethoxam, through possible impacts on foraging efficiency or homing

    Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe

    Get PDF
    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue
    corecore