1,293 research outputs found

    Cover protects critical electrical connectors against damage during handling

    Get PDF
    Split-half cover eliminates the surface marring and dirt penetration problems previously encountered during handling and cable assembly. Metal retaining ring slips over the two plastic halves to hold them in place

    Estudio faunístico del macizo de Quinto Real. II. Moluscos (Mollusca)

    Get PDF
    Se estudia en este trabajo la fauna de Moluscos de Quinto Real. Se han recolectado 516 ejemplares pertenecientes a 23 especies diferentes. Solo tres especies viven en ambientes acuáticos, las demás son te rrestres. Todas las especies terrestres viven en los bosques de hayasT En los habitats fuera del hayedo, que tienen una fuerte influencia antropógena, la fauna de moluscos es muy pobre

    A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry

    Get PDF
    Isothermal titration calorimetry (ITC) has become the gold-standard technique for studying binding processes due to its high precision and sensitivity, as well as its capability for the simultaneous determination of the association equilibrium constant, the binding enthalpy and the binding stoichiometry. The current widespread use of ITC for biological systems has been facilitated by technical advances and the availability of commercial calorimeters. However, the complexity of data analysis for non-standard models is one of the most significant drawbacks in ITC. Many models for studying macromolecular interactions can be found in the literature, but it looks like each biological system requires specific modeling and data analysis approaches. The aim of this article is to solve this lack of unity and provide a unified methodological framework for studying binding interactions by ITC that can be applied to any experimental system. The apparent complexity of this methodology, based on the binding polynomial, is overcome by its easy generalization to complex systems

    Kinetics and thermodynamics of the protein-ligand interactions in the riboflavin kinase activity of the FAD synthetase from Corynebacterium ammoniagenes

    Get PDF
    Enzymes known as bifunctional and bimodular prokaryotic type-I FAD synthetase (FADS) exhibit ATP:riboflavin kinase (RFK) and FMN:ATP adenylyltransferase (FMNAT) activities in their C-Terminal and N-Terminal modules, respectively, and produce flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These act as cofactors of a plethora of flavoproteins in all organisms. Therefore, regulation of their production maintains the cellular flavoproteome homeostasis. Here, we focus on regulation of the FMN synthesis in Corynebacterium ammoniagenes (Ca) by the inhibition of its RFK activity by substrates and products of the reaction. We use a truncated CaFADS variant consisting in the isolated C-Terminal RFK module, whose RFK activity is similar to that of the full-length enzyme. Inhibition of the RFK activity by the RF substrate is independent of the FMNAT module, and FMN production, in addition to being inhibited by an excess of RF, is also inhibited by both of the reaction products. Pre-steady-state kinetic and thermodynamic studies reveal key aspects to the substrates induced fit to produce the catalytically competent complex. Among them, the role of Mg2+ in the concerted allocation of substrates for catalysis and the ensemble of non-competent complexes that contribute to the regulated inhibition of the RFK activity are particularly relevant

    Topological distribution of reversible and non reversible degradation in perovskite solar cells

    Get PDF
    Lead halide perovskites have recently raised as an easy to process and cost effective photovoltaic material. However, stability issues have to be addressed to meet the market need for 25 years durable technology. The stability of the perovskite itself, as well as the stability of the perovskite embedded in a complete device under real working conditions, are a key challenge for perovskite solar cells. Within this study, we used Photoconductive Atomic Force Microscopy pcAFM and Photoluminescence imaging PL to investigate at the nanoscale level the degradation of the perovskite film under light and voltage stress. Then, we correlate the nanoscale pcAFM and PL analysis to the macroscopic device behaviour in similar ageing condition. We found that non reversible performance losses in a complete device originate from degradation localised at the grain boundaries of the perovskite film. Interesting, within the bulk of the perovskite grains we observed fully reversible behaviours. We conclude that the grain boundaries are detrimental to the device stability and they need to be minimized or passivated to achieve fully stable perovskite solar cells even under anhydrous condition

    Fauna de España. Fauna de Anélidos poliquetos de la Península Ibérica

    Get PDF

    Allosteric Inhibitors of the NS3 Protease from the Hepatitis C Virus

    Get PDF
    The nonstructural protein 3 (NS3) from the hepatitis C virus processes the non-structural region of the viral precursor polyprotein in infected hepatic cells. The NS3 protease activity has been considered a target for drug development since its identification two decades ago. Although specific inhibitors have been approved for clinical therapy very recently, resistance-associated mutations have already been reported for those drugs, compromising their long-term efficacy. Therefore, there is an urgent need for new anti-HCV agents with low susceptibility to resistance-associated mutations. Regarding NS3 protease, two strategies have been followed: competitive inhibitors blocking the active site and allosteric inhibitors blocking the binding of the accessory viral protein NS4A. In this work we exploit the intrinsic Zn+2-regulated plasticity of the protease to identify a new type of allosteric inhibitors. In the absence of Zn+2, the NS3 protease adopts a partially-folded inactive conformation. We found ligands binding to the Zn+2-free NS3 protease, trap the inactive protein, and block the viral life cycle. The efficacy of these compounds has been confirmed in replicon cell assays. Importantly, direct calorimetric assays reveal a low impact of known resistance-associated mutations, and enzymatic assays provide a direct evidence of their inhibitory activity. They constitute new low molecular-weight scaffolds for further optimization and provide several advantages: 1) new inhibition mechanism simultaneously blocking substrate and cofactor interactions in a non-competitive fashion, appropriate for combination therapy; 2) low impact of known resistance-associated mutations; 3) inhibition of NS4A binding, thus blocking its several effects on NS3 protease

    A Quantitative Characterization of Nucleoplasmin/Histone Complexes Reveals Chaperone Versatility.

    Get PDF
    Nucleoplasmin (NP) is an abundant histone chaperone in vertebrate oocytes and embryos involved in storing and releasing maternal histones to establish and maintain the zygotic epigenome. NP has been considered a H2A-H2B histone chaperone, and recently it has been shown that it can also interact with H3-H4. However, its interaction with different types of histones has not been quantitatively studied so far. We show here that NP binds H2A-H2B, H3-H4 and linker histones with Kd values in the subnanomolar range, forming different complexes. Post-translational modifications of NP regulate exposure of the polyGlu tract at the disordered distal face of the protein and induce an increase in chaperone affinity for all histones. The relative affinity of NP for H2A-H2B and linker histones and the fact that they interact with the distal face of the chaperone could explain their competition for chaperone binding, a relevant process in NP-mediated sperm chromatin remodelling during fertilization. Our data show that NP binds H3-H4 tetramers in a nucleosomal conformation and dimers, transferring them to DNA to form disomes and tetrasomes. This finding might be relevant to elucidate the role of NP in chromatin disassembly and assembly during replication and transcription

    Deconvolution analysis for classifying gastric adenocarcinoma patients based on differential scanning calorimetry serum thermograms

    Get PDF
    Recently, differential scanning calorimetry (DSC) has been acknowledged as a novel tool for diagnosing and monitoring several diseases. This highly sensitive technique has been traditionally used to study thermally induced protein folding/unfolding transitions. In previous research papers, DSC profiles from blood samples of patients were analyzed and they exhibited marked differences in the thermal denaturation profile. Thus, we investigated the use of this novel technology in blood serum samples from 25 healthy subjects and 30 patients with gastric adenocarcinoma (GAC) at different stages of tumor development with a new multiparametric approach. The analysis of the calorimetric profiles of blood serum from GAC patients allowed us to discriminate three stages of cancer development (I to III) from those of healthy individuals. After a multiparametric analysis, a classification of blood serum DSC parameters from patients with GAC is proposed. Certain parameters exhibited significant differences (P < 0.05) and allowed the discrimination of healthy subjects/patients from patients at different tumor stages. The results of this work validate DSC as a novel technique for GAC patient classification and staging, and offer new graphical tools and value ranges for the acquired parameters in order to discriminate healthy from diseased subjects with increased disease burden
    • …
    corecore