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Abstract

Isothermal titration calorimetry (ITC) has become the gold-standard technique
for studying binding processes due to its high precision and sensitivity, as well as its
capability for the simultaneous determination of the association equilibrium constant,
the binding enthalpy and the binding stoichiometry. The current widespread use of ITC
for biological systems has been facilitated by technical advances and the availability of
commercial calorimeters. However, the complexity of data analysis for non-standard
models is one of the most significant drawbacks in ITC. Many models for studying
macromolecular interactions can be found in the literature, but it looks like each
biological system requires specific modeling and data analysis approaches. The aim of
this article is to solve this lack of unity and provide a unified methodological
framework for studying binding interactions by ITC that can be applied to any
experimental system. The apparent complexity of this methodology, based on the

binding polynomial, is overcome by its easy generalization to complex systems.

Keywords: isothermal titration calorimetry, binding polynomial, macromolecular
interactions, ligand binding, homotropic and heterotropic chemical linkage, allosteric

and polysteric linkage



Introduction

Isothermal titration calorimetry (ITC) has become a standard laboratory
technique worldwide. ITC allows the simultaneous determination of the association
equilibrium constant, the binding enthalpy and the binding stoichiometry in a binding
process where non-covalent interactions are established in solution. Regarding its
applicability, researchers employ ITC for characterizing biomacromolecular interactions
involving proteins, nucleic acids, carbohydrates, lipids, low-molecular-weight
compounds, and even cellular organelles and whole cells. The practical use of ITC
ranges from the study of the interaction between two natural binding partners or the
elucidation of binding cooperativity phenomena underlying allosteric regulation, to the

optimization of lead compounds in drug discovery and development.

Just a few decades ago calorimetry was considered a marginal technique in the
applied chemistry field. Nowadays, the widespread use of ITC for biological systems,
facilitated by technical developments (e.g. increase in sensitivity, miniaturization and
automation) and the availability of user-friendly commercial calorimeters, has led to its
incorporation in many biophysical/biochemical labs, as well as its consideration as the

gold-standard for molecular interaction studies.

Among the advantages in ITC, these can be highlighted:

e Complete thermodynamic characterization in a single experiment

e Broad practical range for binding affinity determination

e No need for molecular labeling

e No need for molecular immobilization

At the same time, among the disadvantages in ITC, these can be highlighted:

e Time and sample consumption

e Inability to reliably determine binding affinities lower than nanomolar (and
higher than millimolar) applying a simple direct set-up

e Complexity of data analysis for non-standard models



The last point is even applicable to standard models (e.g. protein with a single
binding site), because of many ITC users lacking the appropriate experimental training
and knowledge about fundamental concepts associated with binding and, in particular,
calorimetry. Thus, it is not uncommon to observe misinterpretations and systematic
errors in published work. In addition, commercial software packages for ITC analysis
contain only a few binding models and, consequently, users must either develop their
own fitting routines for specific binding models or rely on the capability to apply
standard models to more complex systems with the appropriate assumptions (under
certain circumstances a complex model can be reasonably substituted by a simple,

approximate model).

Many models for studying macromolecular interactions can be found in the
literature: protein with a single binding site, protein with several independent binding
sites, protein with several binding sites exhibiting cooperative interactions (chemical
homotropic and heterotropic linkage), oligomeric protein dissociation, protein self-
association/dissociation coupled to ligand binding (polysteric linkage). Reviewing a
representative set of these publications it is easy to conclude that each experimental
scenario requires its own specific hypotheses, strategies, and approximations, leading

to a rather heterogeneous set of approaches lacking unity.

The aim of this article is to provide a unified mathematical formalism for studying
binding interactions by ITC that can be applied to any experimental system. This
methodology is based on the binding polynomial, the partition function of the system
containing all relevant information [1-3]. As it occurs with many general
methodologies, it may seem artificially complex for simple systems (i.e. like "using a
sledgehammer to crack a nut”), but the easy and straightforward generalization to
complex systems represents a remarkable benefit. Providing a unified framework does
not preclude the user for acquiring proficient training and knowledge about
experimental and theoretical aspects of binding interactions, as well as data analysis.
The methodology and tools described here are directed to the appropriate description
of the binding model, its implementation and its connection with the real system

regarding the estimation of the thermodynamic binding parameters. The strategies for
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obtaining additional information (e.g. performing experiments at different
temperatures, ionic strengths, pH’s, co-solutes, etc. in order to estimate the binding
heat capacity, the net number of protons/ions/molecules exchanged upon binding,
etc., or adopting different experimental approaches), as well as technical descriptions
and protocols for ITC experiments, can be readily found elsewhere. Specific details
about the data pre-analysis (e.g. baseline correction, integration of peaks, etc.) are

expected to be already known to the ITC user.

Before advancing to the following sections two important observations must be
made. First, the set of binding equations does not imply any restrictive assumption (at
least, other than dilute solutions are considered and, therefore, activities can be
replaced by concentrations; alternatively, the activity coefficients can be considered
included in the equilibrium constants) and it is valid for any technique suitable for
binding studies (e.g. circular dichroism, fluorescence spectroscopy, nuclear magnetic
resonance). The basic difference consists of the final observable employed in each
technique (e.g. heat, ellipticity, fluorescence intensity, chemical shift). Second, ITC is
not a differential technique, but a finite-difference technique. Thus, finite changes in
the excess molar enthalpy of the system (heat evolved at constant pressure) triggered
by finite changes in the composition of the system are monitored. Therefore,
cumulative data must not be employed (minimizing systematic errors) and differential
equations should not be employed for modeling the system. Differential equations-
based approaches are fine for academic purposes, but they really do not have added
value compared to finite-differences-based approaches and, furthermore, do not

resemble the actual scenario.



The binding polynomial

For a biological macromolecule, P, with several binding sites for a given ligand, L,
different liganded states can be considered: {PL;, i = 0,...,n}. This ensemble of states is
in equilibrium and overall association constants, /3, or step-wise association constants,

K;, can be defined:

_ [rPLy]
m_mw (1)
K. = [PL;]
L [PLi4][L)

The meaning of these equilibrium constants is simple and rather ambiguous at the
same time, since they are not associated with specific binding sites, but with subsets of
macromolecule-ligand complexes. The constant £ reflects the binding of i ligand
molecules to any i binding sites of the n possible binding sites (no matter their binding
affinity and the specific location of the binding sites) to form the PL; complex (that is, it

is associated to a maximum number of (l) liganded states), whereas the constant K;

reflects the binding of the ith ligand to the PL;; complex to form the PL; complex (no
matter the binding affinity and the specific location of the binding site).

These two sets of equilibrium constants are equivalent and are interrelated:

B =ITC1 K

=114

Bi
K, =
LB

From now on, and for the sake of simplicity, we will only employ the overall

(2)

association constants. These association constants constitute a set of macroscopic
phenomenological model-free parameters governing the binding equilibrium (i.e.
statistical distribution of the macromolecule into the different liganded states), and no
mechanistic interpretation should be inferred from them. However, based on these
association constants, appropriate binding models based on site-specific microscopic

association constants and, if necessary, cooperativity constants, can be discriminated.

The partition function of the system, Z, is defined as:
Z = Yo exp(—AG;/RT) (3)
where R is the ideal gas constant, T is the absolute temperature and AG; is the Gibbs

energy difference between the liganded state with i ligands bound and a reference



state. The ligand-free macromolecule, the state with higher energy (since ligand
binding always lowers the Gibbs energy of the system), is taken as the reference state,
and each exponential term is equal to the relative population ratio of the

corresponding liganded state:

exp(~AGi/RT) = T = L] (@)

The Gibbs energy AG; does not coincide with the usual definition for the Gibbs energy
AG; =-RTIng, but it contains an additional term —iRTIn[L] accounting for the additional
stabilization effect (i.e. reduction in Gibbs energy) of entropic nature induced by the

presence of the ligand.

Therefore, partition function can be expressed in terms of the relative population
ratios, or the association constants and the concentration of free ligand:
Z = Syl = T, ALl = B((L] B) (5)
Thus, the partition function is an n-degree polynomial in [L], with positive coefficients
equal to the overall association constants. Although it has not been indicated in the
previous expression, the dependence on the environmental variables (pressure, pH,
ionic strength, co-solute concentrations,...) is implicitly assumed. The previous
equation provides an operational method for defining the binding polynomial for any
biological system: sum the concentrations of all possible liganded states for the
macromolecule and divide by the concentration of ligand-free macromolecule. The
molar fraction of each liganded state, y;, is given by:

_[PLi] _ BulL)
Xi= 1, = 7 (6)
where [P]t is the total concentration of macromolecule. The molar fraction of ligand-

free macromolecule is equal to 1/Z.

The partition function is also called the binding polynomial because it contains all
information related to the binding in the system; in particular, it defines the average
number of ligand molecules bound per macromolecule, n;g = [L]pouna/[P]+ (Which is the
main parameter in a binding experiment), the average excess molar enthalpy of the

system, <AH>, and the average excess molar Gibbs energy of the system, <AG> [2-4]:
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where AH; is the overall enthalpy associated with the formation of complex PL;. This set
of equations constitutes the foundation for the binding equations to be employed in

any binding model.

From the previous equations the following relationships can be derived:

(6ln)(i) .
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indicating that the molar fraction of complex PL; reaches a maximum value, regarding
the concentration of free ligand and the temperature, when the average ligation
number and the average excess molar enthalpy of the system coincide with the
particular ligation number and excess enthalpy of the complex PL; respectively. In

addition, the homotropic derivative of n,s defines the binding capacity [3,5,6]:

(anw) — <i2) _ (L.>2 (9)

on[L]) 7 Do

which is a measure of the extent of the binding cooperativity and the capability of the
macromolecule for storing and delivering chemical energy (ligand molecules) with the
environment upon changes in the chemical potential of the ligand (similar to the heat
capacity, the capability for storing and delivering thermal energy with the
environment). The binding capacity is related to the Hill coefficient ny (slope of the Hill

plot), another index for quantifying binding cooperativity [3,6]:

anyp
v, = (aln(—nffl;)) B (azn[L])T_p____ (10)
T,p
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where the denominator is the binding capacity for a macromolecule with n identical

and independent binding sites.

The factorability is an important property of the binding polynomial. If the binding

polynomial can be factorized into N terms:



Z = Yo BlLl = TT=1(272 By [L1) = T1§=1Zg (11)
where the n binding sites are distributed into N groups of ng binding sites (Zg=1 ng =
n), then, the system can be considered as a set of N independent subsystems: a set of
N independent subsets of binding sites (i.e. binding sites belonging to different subsets
behave independently, but binding sites belonging to the same subset behave with
(positive) cooperativity). In addition, if the binding sites within a given group can be
considered independent, Z, can be further factorized:

Z = =1 (IT25(1 + kg,lL1)) (12)
and, if all binding sites within a group are identical:

Z = TIN_. (1 + ky[L])"™ (13)
Factorability of the binding polynomial is possible if the following relationship is

fulfilled for every i

A\
(B%))l/ll <1 (14)
()

If all p; =1 the binding sites are identical and independent; if all p; < 1 the binding sites

pi =

are either non-identical and independent or exhibit negative cooperativity (negative
homotropy); and if some p; > 1 some of the binding sites exhibit positive cooperativity
(positive homotropy) [3,7]. Figure 1 illustrates different scenarios for a macromolecule
with three binding sites: identical and independent binding sites, and binding sites with

negative and positive homotropic interactions.

Extensions of the binding polynomial
The binding polynomial can be generalized for a macromolecule capable of

binding two ligands, A with n, sites and B with ng sites [3]:

[PAsBt]
Z= Z?fo ?;40 [P]t = 2?30 ?ioﬁst[A]s[B]t (15)

where S is the overall association constant for the complex PAB;. The constant S
can be split into two factors: S = fsof/s, Where [y is the overall association constant
for P+ A; <> PA;, and [ is the overall association constant for PA; + B; <> PA;B;. Thus,

form the point of view of ligand A, the binding polynomial can be written as:



Z= Z?ﬁo Bso [A]SZ?EO Bt/s [B]t = Zgéo ﬂsOZs,B [A]® = Zgio fpp [A]° (16)
where Zs is the binding polynomial for B restricted to the subset of PA; complexes.

From the binding polynomial average quantities can be calculated:

dlnz
Nyp = (M)T,p,w],...
alnz
BB = \ G5
BB (aln[B])T,p,[A]’--- (17)
_ pp2 (9nZ
(AH) = RT ( aT )p,[A],[B].--

(AG) = —RTInZ
And, by virtue of Maxwell relations and Legendre transformations, chemical

heterotropic linkage relationships between ligands A and B can be obtained [3].

The binding polynomial can also be generalized for a macromolecule exhibiting
different conformations with different ligand binding affinities, giving rise to the
general allosteric model [3]. In a broad sense, allosterism can be considered as the
modulation of conformational equilibrium by ligand binding. Different conformations
of a macromolecule interact with a given ligand with different binding affinities, and,
thus, in the presence of that ligand the conformational equilibrium is redistributed
towards those conformational states able to bind that ligand. In addition, the different
conformational states possess different biological activities (i.e. different ability to
interact with other biological partners). Therefore, the interaction of a macromolecule
with a ligand will influence the ability of that macromolecule to interact with other
ligands. According to the general allosteric model the binding polynomial for a protein

with m+1 conformations and n ligand binding sites is given by:

S ﬁ [PS
= Y50 2i=0 = Y50 2i=0 Sl— = Yeto X oﬁsﬂfs[L] (18)
where f is the overall association constant for the complex PsL; and ¥ is the
conformational equilibrium constant for the Ps conformation (y, = %). Regrouping

terms the binding polynomial can be written as:

Z = Zs 0Vs nOﬁSl[L]i_ s VsZs
= Yiso (Xt 0,3517/5)[] oﬁapp[]

where Z; is the binding polynomial restricted to the P; conformation.

(19)



Special cases can be readily derived from the general allosteric model by imposing
certain constraints [8]. For example, for a homo-oligomeric macromolecule with only
two possible conformations, R and T, and n independent ligand binding sites, the

binding polynomial is given by:

Z = (1+ kg[LD™ +y(1 + ker[LD™ = By () (ich + v = Big PP LY

(20)
where y = [T]/[R], kg and kr are the site-specific microscopic association constants for
the subunits in R and T conformation, respectively (kg > k7). This is the Monod-Wyman-
Changeux (MWC) model, also known as “concerted model” for positive cooperativity,
because the macromolecule consists of n subunits undergoing a simultaneous
conformational change, with no mixed conformational species, modulated by ligand
binding [9]. Interestingly, conformations R and T are not intrinsically cooperative
regarding ligand binding, but ligand binding drives a cooperative transition between
the two conformations. In particular, if there is just one ligand binding site (i.e. no
cooperativity):
Z =1+ kg[L] +y(Q +kr[L]) = (1 +y) + (kg + vkr)[L] (21)
the macromolecule exhibits a conformational equilibrium between two states with

different ligand binding affinities.

If the macromolecule consists of n subunits undergoing individual, sequential
conformational change between two conformations, R and T (with kr = 0), upon ligand
binding (with mixed conformational species, and s = i), the binding polynomial is given
by:

Z =Y Buyilllt = X BFPIL) (22)

where f; is the overall association constant for j ligand molecules to the
macromolecule with i subunits in R conformation. Each term ;% contains the intrinsic
association constant and several factors accounting for binding cooperative
interactions and conformational changes. This is the Pauling-Koshland-Némethy-Filmer
(PKNF) model, also known as “sequential model”, which, contrary to the MWC model,
can describe negative cooperativity [10]. A fundamental difference between the PKNF

and MWC models is that in the former the binding of ligand triggers the subunit
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conformational change (induced fit) and the macromolecule shows intrinsic
cooperativity regarding ligand binding, whereas in the latter the ligand binding shifts
the pre-existing conformational equilibrium (conformational selection) and each

conformation shows no intrinsic ligand binding cooperativity.

Finally, the binding polynomial can also be generalized for a self-associating
macromolecule [3]. The binding polynomial is also a polynomial in [L], but the positive
coefficients are explicitly dependent on the macromolecule concentration [P] and the

self-association constants fym:

s m [PmLi] s m - 1
Z= Z$=1 ?=0m[Tl = Zm=1 Z?:o mﬁsmﬁmi[P]m 1[L]l (23)

where m is the order of the self-association state of the macromolecule (it is included
as a normalizing factor to quantify the macromolecule concentration in a monomer
basis), ms is its maximal self-association order, f, is the m-order self-association
constant, and fn and n, are the overall association constant for the binding of i
ligands to and the number of binding sites in the m-order self-association state of the
macromolecule, respectively. Then, the binding polynomial can be expressed in terms
of the partial binding polynomials Z,, for each m-order self-association state of the
macromolecule:
Z = Yniy MBem [PI™ (128 Bri[L]') = Ty mMBem [P1™ 21 (24)

and from that binding polynomial average quantities can be calculated (Eq. 7).

For an m-order self-associating macromolecule not all low-order self-association states
are significantly populated under certain conditions. For example, a 4-subunit
macromolecule may exhibit a monomer-dimer-tetramer equilibrium, or a monomer-

tetramer equilibrium. Then, the binding polynomial can be considerably simplified.

Binding equations
The set of binding equations is obtained by combining the chemical equilibrium
equations and the mass conservation equations for both the macromolecule and the
ligand:
[Plr = [P1Z

[L1r =[]+ [Ply g (25)
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where, for the sake of clarity the notation of the partial derivative has been simplified,

or alternatively:

[Plr =[P]Z
0z (26)

[L]r = [L] + [PILL] 55

In the first form (method 1) an n+1-degree polynomial equation in [L] is obtained:

[L]+ [Ply gz = [Llr = 0 (27)

whereas in the second form (method 2) a set of non-linear equations in [P] and [L] is

obtained:
[P1Z - [Pl; =0
[L]+ [PI[L] 5 = [Llr = O (28)

These sets of equations can be solved analytically for simple systems (e.g. one or two
classes of independent binding sites) or numerically for any system (e.g. using the
Newton-Raphson or the bisection method) [11]. Thus, solving for [P] and [L] for given
values of [P]s, [L]r and {f}, the concentration of each complex can be calculated (see

Eq. 6):

[PL] = [Plrx: = [P1 B2 = g 1Py L) (29)

Although both approaches are equivalent, method 2 is more easily generalized (in
particular, for polysteric systems, where ligand binding effects are linked to

association/dissociation of a macromolecule, and systems with more than one ligand).

Solving equilibrium equations

Because analytical methods have limited use for solving polynomial equations,
numerical methods are preferred. Newton-Raphson method provides an easily
programmable and generalizable algorithm with reasonably fast convergence for

solving the binding equations. For method 1, a recursive relationship is defined:

[L]+ [Py g = [L1g = 0 = f(IL) =0 )
30
[Llir = L = SE1%, until |[L]ier = [L1el <&

Selecting an appropriate initial value and a convergence limit, [L] can be calculated for

given values of [P];, [L]r and {#}. For method 2, a similar recursive relationship is

defined:

12



[P]Z — ([)I;]T =0 . {fl([p], [L]) =0 I
(L] + [PI[L] o= = (L1 = 0f = Uf(IPLILD = 0 31)
Bryr = % —J @) - FE), until [Fyq — %l < e
where J is the Jacobian matrix (J,q = a];’;(}?)) associated with the set of equations.
q

Similarly, selecting appropriate initial values and a convergence limit, [P] and [L] can be
calculated for given values of [P]y, [L]r and {£}. And, once [P] and [L] are known, the

concentration of complexes PL; can be calculated.

Application of binding equations to ITC

Up to now, we have dealt with solving a binding equilibrium for given total
concentrations of macromolecule and ligand. In an ITC experiment the composition of
the calorimetric cell changes as the solution from the syringe is injected sequentially
and the heat associated with each injection is measured. As a result, the system is
going through a discrete set of equilibrium states of different chemical composition.
The direct observable in an ITC experiment is the heat per injection, which reflects the
formation/dissociation of macromolecule-ligand complexes elicited by the addition of
titrant solution. Therefore, the change in the concentration of each complex PL; upon
injection j must be calculated, in order to estimate the expected heat effect associated.
This involves solving the binding equations for each injection (experimental point)
along the titration. And, for this calculation, the total concentration of macromolecule
and ligand, [P]r and [L]7, in the calorimetric cell must be calculated. For any chemical
species located in the syringe at concentration [S]p the concentration in the

calorimetric cell after injection j is given by:

[S1r,; =[Sl (1 - T, (1 - Z)) (32)

Vo
where v, is the volume for each injection and Vj is the cell volume. Similarly, for any
chemical species located initially in the cell at concentration [C], the concentration in

the calorimetric cell after injection j is given by:

[Clrj = [Clo Ty (1 %) (33)

These expressions are valid for a displacement-type calorimeter operating at constant
cell volume, that is, when injecting a given volume from the syringe, an equivalent
volume is expelled from the cell with no simultaneous mixing. There are other

13



expressions for calculating these concentrations upon other assumptions (e.g.
simultaneous mixing of ligand solution while injecting) [12,13], but all of them are

equivalent provided that v;/V, << 1.

Once the concentrations of macromolecule-ligand complexes after each injection,
[PLj]; are calculated, the heat effect associated with each injection, g; can be

calculated as a finite-difference:

q; =V ([P]T,j(AH)j — [Plrj-1(AH); 4 (1 - %)) = Vo Xit1 AH; <[PLi]j -

[PLLj— ( —Z—;’)) (34)

Usually, an additional adjustable parameter g4 accounting for non-zero background
injection heat due to titrant dilution/injection is included in the right-hand side of the
previous equation. Also, the heat effect is normalized by the amount of titrant

injected, Anyr:

_ 9
&=k (35)

For very small injection volumes (compared to V) Q; could be considered identical to
the derivative dg;/dn,r. However, Q; is actually g;/An,r, a quotient of finite-differences

(i.e. an incremental or difference quotient).

Finally, the experimental data (experimental heats per injection) are compared to
the calculated values and the thermodynamic binding parameters ({£}, {AH}) can be
estimated through an iterative non-linear least-squares regression analysis. For this
purpose the Levenberg-Marquardt algorithm has been employed (as implemented in
Origin 7.0). Other appropriate algorithms (e.g. steepest descent or conjugate gradient
search) can be adopted instead. In the following sections different macromolecular

systems will be described by applying this methodology.

Summarizing, the sequence of steps for constructing a model for ITC:
1. Enumerate all the macromolecular states and construct the binding polynomial.
2. Calculate the total concentration of macromolecule and ligand(s) in the

calorimetric cell, according to the experimental set-up.

14



3. Solve binding equations and calculate the concentration of all complexes after
each injection.

4. Calculate the normalized heat associated with each injection.

5. Estimate the thermodynamic binding parameters through non-linear regression

analysis.

Macromolecule with one ligand binding site

This is the simplest case and it will be employed as an example for
comprehensively describing all calculation steps. As indicated above, this case can be
handled using much simpler and direct approaches, but mastering the general
methodology at this level guarantees a successful application to more complex

systems.

Evidently, in this system the association constant, £, and the overall binding
enthalpy, AH, coincide with the step-wise association constant K; and step-wise
association enthalpy AH, as well as with the microscopic site-specific association

constant k and the binding enthalpy Ah.

A macromolecule with a single ligand binding site is represented by an overall
association constant £ and an overall binding enthalpy AH. The binding polynomial is
given by:

Z =1+ p[L] (36)
from which:

_ PBIL]
B = pI

_ _BlL]
(AH) = AL AH

(37)

and the molar fractions for the ligand-free and ligand-bound macromolecule are:

1

Xo = TH81
Bl (38)
L7 14B[L]

According to method 1 the binding equations are expressed as follows:

15



[Plr = [P](1 + BIL])

(L7 = [1] + [P], AL 59)

from which a quadratic equation in [L] is obtained:
[L1? + [L1(1 + B([P]r — [L]7)) — [L]r = O (40)
that can be solved numerically by the Newton-Raphson iterative algorithm:

BILIZ+[Llk(1+B8(PIr—IL]r))-[L]T

e = Wl = =00 e p ot (41)
According to method 2 the binding equations are expressed as follows:
[Pl = [P1(1 + BILY) )
[L]r = [L] + BIP]IL]
from which a set of non-linear equations in [P] and [L] is obtained:
[P]+ BIPIIL] — [Pl =0 (43)
[L] + BIPIIL] - [L]r =0
that can be solved numerically by the Newton-Raphson iterative algorithm:
([P]k+1) _
[L]k+1
([P]k)_ 1 (1+,8[P]k —BPlk )_([P]k-l_lg[P]k[L]k_[P]T) (44)
[L]i/  1+BUPLtLION\ —B[L], 14 BILlx/ \[LIx + BIPIk[L]x — [L]r

The concentration of the macromolecule-ligand complex can be readily calculated

from the free macromolecule and ligand concentrations, [P] and [L]:

[PL] = [Py e = BIPIIL] (45)

If these calculations are performed for each injection j, then, the normalized heat

associated with injection j along the calorimetric titration is given by:

Q= — <V0AH <[PL]j —[PL]j- (1- %)) + qd> (46)

vj[L]o
and the non-linear least squares regression analysis allows estimating the
thermodynamic binding parameters. A macromolecule with a single binding site is the
most common situation found in the literature. Figure 2 shows two examples of a
single ligand binding: EDTA interacting with calcium and NS3 protease from the

hepatitis C virus interacting with its inhibitor danoprevir.

These equations can be applied to any experimental set-up: ligand A solution

titrated into a macromolecule solution (direct titration), macromolecule solution
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titrated into a ligand A solution (reverse titration), and ligand A/macromolecule

solution diluted into buffer solution.

Macromolecule with two ligand binding sites

The next level in complexity corresponds to a macromolecule with two binding
sites for a ligand. The two binding sites may be identical or non-identical, and
independent or cooperative. Although the data analysis to be performed can be based
on the microscopic site-specific association constants, k; and k,, the site-specific
binding enthalpies, Ah; and Ah,, and the cooperativity parameters, a and Ah, it is best
to employ the general phenomenological model based on the overall parameters and
later select the appropriate specific model depending on their values. A detailed

description and different examples can be found elsewhere [14,15].

A macromolecule with two ligand binding sites is represented by two overall
association constants, f; and /3, and two overall binding enthalpies, AH; and AH,. The

binding polynomial is given by:

Z=1+p [L] + B [L]2 (47)
from which:
_ BalLl+2B;[L)?

"B = LB LI+ Bo LT
__ P1lL1AH +B[L]2AH,
(AH) = 1+ [L]+B[L]?

(48)

and the molar fractions for the ligand-free macromolecule and the different

macromolecule-ligand complexes are:

1
Xo =

1+B1[L]+B2[L]?
_ B1lL]
T LR LB (49)
__ Ba[LP?
X2 = 10, L1+ B L2

According to method 1 the binding equations are expressed as follows:

[P]r = [PI(1 + By[L] + B2[L]*)

_ Baltls26,(LF =0
[L]r = [L] + [P]r 1+B4[L]+B2[L]?

from which a cubic equation in [L] is obtained:
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[L1*B, + [L1?(By + B.(2[P]r — [L17)) + [L1(1 + By ([P1r — [L])) — [L]r = O

(51)
that can be solved numerically by the Newton-Raphson iterative algorithm:
[Llks1 = [L]k — L) (52)
frLle)
According to method 2 the binding equations are expressed as follows:
[Plz = [P1(1 + B1[L] + B2[L]*) (53)
[L]y = [L] + B,[P][L] + 2B, [P][L]?
from which a set of non-linear equations in [P] and [L] is obtained:
[P1+ BiPI[L] + BoIPIILI — [Py = 0 52

[L] + B1[P][L] + 2B, [P][L]* — [L]y = O

that can be solved numerically by the Newton-Raphson iterative algorithm:

Plessy _ (1Pl s AP I
(1) = ()~ b e+ (2 o 1) (55)

The concentration of the macromolecule-ligand complexes can be readily calculated

from the free macromolecule and ligand concentrations, [P] and [L]:

[PL] = [Py s rpie = AulPIIL] -
5
[PLy) = [Py 7t = By [PIILI?

If these calculations are performed for each injection j, then, the normalized heat

associated with injection j along the calorimetric titration is given by:

Q=i <Vo (AH1 ([PL] ;= [PLYj (1 - 7)) + AH, ([PLZ] ;= [PL)j (1-

V—’))) + qd> (57)

and the non-linear least squares regression analysis allows estimating the
thermodynamic binding parameters. Recent examples of the application of this model
are: inhibitor binding to choline kinase al [16], inhibitor from horseshoe crab binding

to subtilisin [17], and lipid binding to GrIR [18].
Once the overall thermodynamic parameters are determined, the appropriate
specific model can be selected according to the value of the following parameter (see

Eq. 14):
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— b2 58

If o, <1 the binding polynomial is factorable. If p, = 1 the binding sites are identical
and independent; if p, < 1 the binding sites are either non-identical and independent
or exhibit negative cooperativity; and if p, > 1 the binding sites exhibit positive
cooperativity. Then, the binding polynomial can be expressed in terms of the site-
specific association constants:

Z =1+ 2k[L] + k2[L]? = (1 + k[L])?
Z =1+ (kg + k)[L] + kyko[L]? = (1 + kq [L]D (1 + k5 [L]) (59)
Z =1+ 2k[L] + ak?[L]?

for identical and independent binding sites, non-identical and independent binding
sites, and identical and cooperative binding sites (PKNF model), respectively, where k is
the microscopic association constant for each identical site (associated with a
microscopic binding enthalpy Ah), k; and k; are the microscopic association constants

for the non-identical sites (associated with a microscopic binding enthalpies Ah; and

Ahy), and « (=ﬁ=p2, see Eq. 14) is the cooperativity interaction constant

B3
associated with a cooperativity binding enthalpy Ah (= AH, — 2AH;). The described
methodology can now be applied starting from any of these binding polynomials.
Alternatively, the transformation relationships for calculating the site-specific binding
parameters from the overall binding parameters can be used (see the Discussion

section) [15].

Unfortunately, not all cases are well-defined, because, for example, non-identical
independent binding sites and identical binding sites with negative cooperativity are
mathematically equivalent models and cannot be distinguished without employing
extra-thermodynamic information (e.g. kinetic or structural information). In addition,
mixed ill-defined cases can be found in the literature (e.g. non-identical binding sites
(2 < 1) exhibit positive cooperativity (o, > 1), resulting in an overall p, > 1). Therefore,
the description in terms of the overall binding parameters is always valid and well
justified, whereas the description in terms of the microscopic site-specific parameters

might be sometimes questionable.
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The binding polynomial expressed in terms of the step-wise equilibrium
association constants deserves special attention (see Eq. 2-5):
Z =1+ K[L] + K;K,[L]? (60)
Because of its nested expression, it is usually called “sequential binding model”, very
often implying some kind of binding site occupation order. This mechanistic
misinterpretation erroneously considers that: 1) K; and K, are the association
constants for the first and second binding sites, respectively; and 2) if K; and K, are
different, the macromolecule presents two non-identical binding sites or the binding
sites are cooperative. However, K; represents the binding of the first ligand to any of
the two binding sites, and K, represents the binding of the second ligand to the
remaining unoccupied binding site (thus, for stating that “the first ligand binds first”,
no special name for the model is needed). Another mistake adding to the incorrect
interpretation regarding the occupation order is that the ligand always binds first to
the high affinity site. If the binding sites are non-identical and independent, there is
always a certain fraction of macromolecule with a single ligand bound to the low
affinity binding site; unless the affinity difference is very large, all possible liganded
states have finite non-zero population. If the binding sites show negative cooperativity,
the ligand always binds first to the high affinity site; on the contrary, if the binding sites
show positive cooperativity, the ligand always binds first to the low affinity site.
Binding cooperativity occurs if p, = 4K,/K; is larger or smaller than 1 (that is, if K, > K1/4
or K, < K;/4, considering appropriately the statistical configuration factors involved)
(see Eq. 2 and 14). In fact, if K; = K, there is positive cooperativity. We propose to
abolish the name “sequential binding model”, since this is just the general binding
model expressed in terms of the step-wise association constants and that name is

misleading.

Macromolecule with several classes of independent ligand binding sites

A macromolecule with n binding sites is represented by a set of association
constants, £, and a set of overall binding enthalpies, AH;. The general expression for
the binding polynomial leads to consider 2n binding parameters (association constants
and binding enthalpies). It is difficult to reliably independently determine such a large

set of parameters from the titration curve. In this case, error analysis and parameter
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correlation analysis are crucial to properly establish uncertainties and dependencies
among parameters. In addition, global analysis of sets of experiments at different
concentrations or with different set-ups (e.g. direct and reverse titrations) may help in

reducing parameter uncertainties and dependencies.

In certain cases, the number of parameters can be reduced. As explained before, if
the n binding sites are distributed into N groups of n, binding sites (Zgzl ng =n)and
if the g groups of binding sites are considered independent, the binding polynomial
can be factorized into g factors:

Z = =125 = M§=1(Zi2, By,lL1) (61)

In addition, if the binding sites within a given group can be considered independent,
the g factors can be further factorized:

Z = T§=a(T12(1 + kg u[L1)) (62)
and, if all binding sites within a group are identical:

Z = TNoq (1 + Kk, [L])™ (63)
where the set of binding parameters has been reduced to 2g (g site-specific
microscopic association constants, k; and g site-specific microscopic binding
enthalpies, Ahgy). The described methodology can now be easily applied starting from
any of the previous binding polynomial expressions. Examples of a macromolecule
with different classes of binding sites or binding sites exhibiting homotropic

interactions can be found in the literature [19-23].

Macromolecule with two different cooperative ligands

In many cases the binding of ligand A is regulated by the binding of a second ligand
B in an allosteric cooperative fashion. Thus, the macromolecule can bind two different
ligands A and B, a special case of Eq. 15-16 with ns = 1 and ng = 1. The binding of ligand
B will affect the thermodynamic parameters for ligand A binding. Conversely, the
binding of ligand A will affect the thermodynamic parameters for ligand B binding.
Because of energy conservation (irrespective of molecular sizes and structural steric
and accessibility considerations), the effect of ligand B on ligand A binding affinity (a-

fold) is the same as the effect of ligand A on ligand B binding affinity. The binding
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cooperativity may be due to short range direct ligand-ligand interaction or long-range
indirect interaction through a macromolecule conformational change. A detailed

description and analysis of this model can be found in the literature [14,24,25].

If the ligand A is titrated into a macromolecule solution with the ligand B, then, the
binding affinity and the binding enthalpy for ligand A are modulated by the binding

parameters and concentration of ligand B according to a simplified model [24,26]:

1+apBp[B]
app ﬁA 1+aﬁ B
aInpoPP (64)

v )[A] . AH, — BElB ] AHj + L(AHB +AR)
, )P

1+Bg(B] 1+afpl

AH PP = RT? (

Under certain circumstances, the ternary system (P, A, B) can be substituted by a
simple approximated model from the point of view of ligand A defined by the binding
apparent binding parameters and the cooperativity binding parameters (« and Ah) can
be calculated from the intrinsic binding parameters for ligands A and B [27].
Nevertheless, there is no need for using these equations derived from a simplified

model, since the exact ternary model can be employed.

A macromolecule capable of binding two different interacting ligands is
represented by two association constants, 4 and fs, and two binding enthalpies, AH4
and AHpg, plus a cooperativity interaction constant, «, and a cooperativity binding
enthalpy, Ah. Positive heterotropic cooperativity corresponds to « > 1, whereas
negative heterotropic cooperativity corresponds to o < 1. If a = 1 the ligands behave
independently and the data analysis is trivial. Since ny = ng = 1, there is no practical
distinction between overall, step-wise and microscopic association constants and

binding enthalpies. The binding polynomial is given by:

Z =1+ B4[A]l + Bg[B] + aB4fplAl[B] (65)
from which:
- BalAl+aBaBplAl[B]
AB ™ 148 4[Al+Bp(Bl+aBaBplAl[B]
_ BplBl+afB4Bp[AllB]
BB = 1 palAl+BalB]+apABlAlE] (66)
(AH) = [A]AH 4 +Bg[BlAHB+a 4 B[Al[B](AH s +AHp+Ah)
1+B4[Al+Bp[B]+aB4Bp[A][B]
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and the molar fractions for the ligand-free macromolecule and the different

macromolecule-ligand complexes are:

1

Xo =

1+B4lAl+B[Bl+aBaBr[AllB]
— BalA]
XA = 13 Balal+BslBl+apapslAlB] -
_ B5l5]
XB =

1+ B4[Al+Bp[Bl+aBaBplA][B]
g = aBaBslAllB]
AB ™ 14B4lA1+Bp[Bl+aBaBBlAl[B]

According to method 1 the binding equations are expressed as follows:

[P]r = [P](1 + Ba[A] + Bg[B] + aB4BslAl[B])

_ BalAl+aBaBplAllB]
[Alr = 1Al + [Pl 1+BalAl+Bp[Bl+aBaBplA](B] (68)

_ Bp[Bl+afaBBlAllB]
[B]T = [B] + [P]T 1+BalAl+BB[B]+aB BBl

Al[B]

from which two quadratic equations in [A] and [B], and a quintic equation in [P] are
obtained, and they can be solved numerically by the Newton-Raphson iterative
algorithm.

According to method 2 the binding equations are expressed as follows:

[Ply = [P]1(1 + B4[A] + Bs[B] + aBapplAl[B])
[A]7 = [A] + Ba[P][A] + aBaPg[P][A][B] (69)
[Blr = [B] + Bg[P][B] + aB.Bs[P][A][B]

from which a set of non-linear equations in [P], [A] and [B] is obtained:
[P] + BalPI[A] + Bs[P1[B] + aBaBs[PI[Al[B] — [P]lr = O

[A] + B4[PI[A] + aBaBp[Pl[A][B] — [A]lr = 0 (70)
[B] + BpP][B] + aBaBp[P]lAl[B] — [B]r = 0

that can be solved numerically by the Newton-Raphson iterative algorithm:

[Pli+1 [Pk fi([P]k, [Alk, [Blx)
[Alis1 | = [Alx | =] ([Pw [Alk, [Bli) - | f2([Plk, [Alk, [Bli) (71)
[Blk+1 [Blk f3([Pk, [Alk, [BIi)

The concentration of macromolecule-ligand complexes can be readily calculated from

the free macromolecule and ligands concentrations, [P], [A] and [B]:

[PA] - [P]T 1+B4[A ]+ﬁBB[;][+]aﬁAﬁB[A - 'BA[ ][ ]
[PB] = [P]THBA[AHBB’;LLBABB = Bs[P1[5] (72)
[PAB] = [P] aPalplA]1E] = aﬁAﬁB[ 1[4][B]

T 1+B4lA1+Bg[Bl+aBaBplAl

If these calculations are performed for each injection j, then, the normalized heat

associated with injection j along the calorimetric titration is given by:
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Q= ;<V0 (AHA <[PA]]- — [PA];, (1 - Z—é)) + AH, ([PB]j — [PB];_ (1-

vj[L]o

%)) + (AH, + AHp + AR) ([PABL' —[PAB]; (1 - %)» * qd) .

and the non-linear least squares regression analysis allows estimating the
thermodynamic binding parameters. Figure 3 shows an example corresponding to the
NS3 protease from the hepatitis C virus, capable of interacting with its substrate and

the activating accessory viral NS4A protein.

These equations can be applied to any experimental set-up: ligand A solution
titrated into a macromolecule/ligand B solution, macromolecule solution titrated into
a ligand A/ligand B solution, and ligand A/ligand B solution titrated into a
macromolecule solution. Moreover, complete saturation of macromolecule with ligand
B when both placed together in the cell is not required. On the other hand, there are
no particular requirements for the relative binding affinities or relative binding
enthalpies of ligand A and ligand B (except when a << 1 and placed in syringe and cell,

respectively, as seen in the next section).

Macromolecule with two different competitive ligands

In many cases the binding affinity for a given ligand A is too high (too low) to be
reliably determined in a standard titration. Although there are several ways to
overcome this difficulty (e.g. change temperature or pH), the most appropriate
approach consists of performing a titration in the presence of a competing ligand B
with lower (higher) binding affinity. Thus, competition or displacement titration can be
employed to extend the practical window for experimental determination of ligand A
binding affinity, from very high (higher than nanomolar) to very low values (lower than
millimolar) [28,29]. In the first case, the potent ligand A is usually titrated into a
macromolecule solution with the weaker ligand B; then, the binding affinity and the
binding enthalpy for ligand A become modulated by the binding parameters and
concentration of ligand B according to a simplified model (taking @ = 0 and Ah =0 in

the previous simplified model):
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app _ __ Pa
A 1+Bg[B]

app _ _ _BslB]
AH,"”" = AH, 1+,83[B]AHB

(74)

and, selecting appropriately the ligand B and its concentration, the apparent binding
affinity is lowered to experimentally accessible values. The intrinsic binding parameters
for ligand A can be calculated from its apparent binding parameters and the intrinsic
binding parameters for ligand B. In the second case, ligand B plays the role of potent
ligand, while ligand A is the weak ligand. Similar equations hold, except for reversing
the roles of both ligands. The intrinsic binding parameters for ligand A can be
calculated from the apparent and the intrinsic binding parameters for ligand B.
Nevertheless, there is no need for using these equations derived from a simplified
model, since the exact ternary model can be employed and applied to any

experimental set-up [12,30-32].

Now, a macromolecule can bind two different ligands A (n4 = 1) and B (n4 = 1). The
binding of ligand A is completely dependent on ligand B binding, because they are
competitive ligands (i.e. their binding is mutually exclusive). The reciprocal excluding
binding effect may be due to direct ligand-ligand steric hindrance or long-range
indirect interaction through a macromolecule conformational change between two
conformational states, each one capable of binding ligand A or ligand B only. This case
is a special limiting case of the previous one for maximal negative cooperativity (o= 0

and Ah =0).

Therefore, a macromolecule capable of binding two different competitive ligands
is represented by two association constants, £ and S, and two binding enthalpies,
AH, and AHg. The binding polynomial is given by:

Z =1+ BalA]l + BplB] (75)
from which:

- BalAl
AB ™ 14B4[A1+BR[B]
. = PalBl
BB ™ 1+B4lA1+B5[B]
_ BalAlAH 4+Bg[B]AHE
(AH) = 1+BalAl+Bp(B]

(76)
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and the molar fractions for the ligand-free macromolecule and the different

macromolecule-ligand complexes are:

1
Xo =

1+ B4[Al+BB([B]
_ BalAl
XA = T BalaT+B51B] (77)
xg = BglB]
B ™ 14B4[41+B5[B]

According to method 1 the binding equations are expressed as follows:

[P]r = [P](1 + B4[A] + B[B])

_ BalA]
[Ale = A1+ [Plr g G o (78)

_ _palel
[B]r = [B] + [P]r 1+B4[Al+B5[B]

from which a cubic equation in [P] is obtained:
[P13BaBs + [P1*(Ba + Bs + BaBe([Alr + [Blr — [P17)) + [P1(1 + Ba([Alr —
[P17) + Bs([Bl7 — [P]7)) — [Plr = O (79)

and it can be solved numerically by the Newton-Raphson iterative algorithm:

i1 0PI
[P]k+1 - [P]k f’([P]k) (80)

and [A] and [B] are calculated from:

1

T 14B4lP]
1 (81)

[B] = [Blr 5

[A] = [A]

According to method 2 the binding equations are expressed as follows:

[Pl7 = [P1(1 + BalA] + Bs[B])
[A]T = [A] + Ba [P][A] (82)
[Blr = [B] + Bs[P][B]

from which a set of non-linear equations in [P], [A] and [B] is obtained:

[P] + BalP1[A] + B5[P][B] — [Plr = 0
[A] + BalP1[A] — [Alr = O (83)
[B] + Bs[P][B] — [B]r = 0

that can be solved numerically by the Newton-Raphson iterative algorithm:

[P]k+1 [P]k fl([P]k' [A]kr [B]k)
[Ali+1 | = | [Ale | =7 [Pk, [Alk, [B) - | f2([Pli. [Alk, [Bli) (84)
[Blie+1 (Bl f3([Plk [Alk, [Bk)

The concentration of macromolecule-ligand complexes can be readily calculated from

the free macromolecule and ligands concentrations, [P], [A] and [B]:
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[PA] = [Pl —244__ _ g [P][4]

BB][B] (85)
[PB] = [P]Tm = Bg[P][B]

If these calculations are performed for each injection j, then, the normalized heat
associated with injection j along the calorimetric titration is given by:

Q; = ;<VO (AHA <[PA]]- — [PA];, (1 - Z—(’))) + AHp ([PB]j — [PBl; (1-

vj[L]o

V—’))) + qd> (86)

and the non-linear least squares regression analysis allows estimating the
thermodynamic binding parameters. Figure 4 shows an example corresponding to two
competitive ligands (calcium and magnesium ions) binding to the same molecule
(EDTA). This approach has been successfully applied to determining the
thermodynamic binding parameters of first- and second-generation inhibitors of the

HIV-1 protease [33-37].

These equations can be applied to any experimental set-up: ligand A solution
titrated into a macromolecule/ligand B solution, macromolecule solution titrated into
a ligand A/ligand B solution, and ligand A/ligand B solution titrated into a
macromolecule solution [38,39]. Moreover, complete saturation of macromolecule
with ligand B when both placed together is not required. If ligand A solution is titrated
into a macromolecule/ligand B solution, the binding affinity of ligand A must be higher
than that of ligand B; otherwise, binding of ligand A by displacing ligand B will not

Ooccur.

Self-associating macromolecule

The energetics of macromolecular heterodimerization is easily monitored by ITC,
just by locating one subunit in the syringe and the other in the cell. However, the
energetics of homodimerization cannot be determined using that experimental
scheme. A macromolecule solution will always contain dimers, P,, and monomers, P,
and monomers cannot be isolated (except by lowering the concentration). This

problem is worked out by performing the titration of a concentrated macromolecule
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solution into a buffer solution. The observed heat effect reflects the dissociation of
homodimers into monomers triggered by the dilution upon injection [40,41].

A macromolecule exhibiting monomer-dimer equilibrium is represented by a
dimerization constant, S (= [P,]/[P]?), and a dimerization enthalpy, AH. Expressing
the concentration of macromolecule on a monomer basis, the binding polynomial is
given by:

Z =1+ 2pB[P] (87)
from which:

_ 2B[P]
Npp = 1+28[P]

_ _2BlP]
(AH) = Tr251P] AH

(88)

and the molar fractions for the monomeric and dimeric macromolecule are:

!
T 1+2p[P]
2p[P]

T 142B(P]

X1
(89)
2

Because there is only one component there is no distinction between method 1

and 2. The binding equation is expressed as follows:

[P]r = [PI(1 + 2B[P]) (90)
from which a quadratic equation in [P] is obtained:
[P]?28 + [P] - [P]; =0 (91)

and it can be solved analytically or numerically by the Newton-Raphson iterative

algorithm:

_ _ 2B[PIR+[Pli=[Plr
[P]k-l-l - [P]k 4‘B[P]k+1 (92)

The concentration of dimers can be readily calculated from the concentration of

monomers [P]:

[P,] = [Py o i = BIPY? (93)

If these calculations are performed for each injection j, then, the normalized heat

associated with injection j along the calorimetric titration is given by:

Qj = Uj[;]o (Vo <(—AH) ([P]j —[P]j-1 (1 - %)) - )(1,0[”0%) + Qd> (94)

where [P]p and y10 are the concentration of macromolecule (in a monomer basis) and

the molar fraction of macromolecule monomers in the syringe, respectively, and the
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dimerization enthalpy is considered per monomer. The quantity y10 can be calculated

as follows:
_ J/1+8pB[P]p-1
10 = e, (93)

The expression for the heat effect associated with each injection reflects the change
(increase) in monomer concentration in the cell elicited by that injection. Because the
macromolecule in the syringe is not completely in dimeric form, a certain amount of
monomers, not contributing to the heat effect, are injected upon each injection. That
is the reason for including the correcting term in the previous equation. Non-linear
least squares regression analysis allows estimating the thermodynamic binding

parameters.

These equations are also valid for characterizing the energetics of heterodimer
formation by performing heterodimer dissociation experiments. And this is not limited
to dimers, but higher-order homo-oligomers (P,) can also be characterized by this

procedure [42].

Self-associating macromolecule with a single ligand binding site

As a final example of the versatility of the described methodology, a
macromolecule exhibiting a monomer-dimer equilibrium modulated by ligand binding
(an example of polysteric linkage) will be considered [3,43]. Because of the
conservation energy principle, the coupling effects between self-association and ligand
binding are reciprocal, as it will be shown below: if the ligand binds preferentially to
the dimer (i.e. higher binding affinity for the dimeric macromolecule), ligand binding
promotes macromolecule dimerization (i.e. higher monomer-monomer affinity when
bound to ligands); and if the ligand binds preferentially to the monomer (i.e. lower
binding affinity for the dimeric macromolecule), ligand binding promotes
macromolecule monomerization (i.e. lower monomer-monomer affinity when bound

to ligands).

A macromolecule exhibiting monomer-dimer equilibrium with a ligand binding site

in each monomer is represented by three association constants (11, 21 and f»;) and
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three binding enthalpies (AH11, AH>; and AH;;) corresponding to the complexes PL, P,L
and P,L,, as well as three dimerization constants (5, £:; and f) and three dimerization

enthalpies (AHo, AH1 and AH,) corresponding to the complexes P,, P,L and P,L;:
[P,] = Bo[P]?
[PL] = B11[P]IL]
[P,L] = 321,30[]3]2[['] = B11B1 [P]Z[L]
[Psz] = ﬂzzﬁo[P]z[L]z = ﬂ121ﬁ2 [P]Z[L]Z

As it can be seen, all these equilibrium constants (as well as their associated binding

(96)

enthalpies) are not independent, but certain linkage constraints exist among them. In

particular:

B21Bo = B11B1
B22Bo0 = ,3121,32

from which the following relationships can be derived:

B _ B
Bi1  Bo
Bz _ B2

[7’21311 Bl

(97)

(98)

reflecting the reciprocal coupling between the self-association and the ligand binding.
For example, the first one states that if the ligand binding affinity is higher for the
dimer compared to the monomer (f£,/: > f1/1), the strength of the dimer is higher when
a ligand is bound (f; > f), that is, ligand binding promotes dimerization of the
macromolecule. Besides the linkage between self-association and ligand binding, the

binding of ligand to the dimer may exhibit homotropic (positive or negative)

cooperativity if a = 45% # 1 (with Ah = AH,, — 2AH,,).
21

Expressing the concentration of macromolecule on a monomer basis, the binding
polynomial is given by:
Z =1+ 2B,[P] + (B11 + 2B21B0[PDIL] + 2528, [P][L]? (99)
or expressed in terms of the partial binding polynomials Z,, for each m-order self-
association state of the macromolecule (ms=2,n;=1, n, =2):
Z = (1 + Bu1[LD + 2Bo[P1(1 + Boq[L] + B22[L]?) (100)

from which:
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n . = (B11+2B21Bo[PDIL]+4B22Bo[P][L]?
LB 1428, [P1+(B11+2B21 BoPDILI+2B22 B0 [PI[L]?
2B0[P1AHo+B11[L1AH11+2B21 Bo[P1[L1(AHz1+AHo)+2B22 Bo[P1[L]? (AHz2+AH,)
14280 [P]+(B11+2B21Bo[PDIL]+2B22 80 [P][L]2

and the molar fractions for the ligand-free macromolecule and the different

(101)
(AH) =

macromolecule-ligand complexes are:

1

X1/0 = 13280 [P+ (B11+2B 21 Bl PDILI+ 2822 B PIILI2

_ 2f0[P]
X2/0 = 1358, [PI+(Ba1+2B21 ol PDILI+ 2822 Bo PIILI?

B11lL]

X110 = 2B IPT+ (Bra+2Ba1 BoPDILI+ 2B 52 Bo PIILTE (102)

_ 2B21B0[P][L]
X2/1 = 1358, [P+ (Baa+ 2821 BolPDILI+ 222 Bo PIILI?

_ 2B22Bo[P][L]?
X2/2 = 1328, [P1+(Ba1+2B21 BolPDILI+ 2852 Bo PILLI2

As mentioned before, method 1 is not appropriate for models with more than two
components or involving self-associating macromolecules. According to method 2 the

binding equations are expressed as follows:

[Plr = [P1(1 + 2Bo[P] + (B11 + 2B21Bo[PDIL] + 282280 [P1[L]?)

[L1r = [L] + B PIIL] + 2851 Bo[PIE L] + 4808 [PTEILI? (103
from which a set of non-linear equations in [P] and [L] is obtained:
[P]+ 2B0[P]? + B11[PIIL] + 282180 [P1?[L] + 2B22B0[P1?[L]* — [P]7 = 0(104)

[L] + 11 [PI[L] + 2851 B [PI?[L] + 4B22B0[PI?[L]? — [L]7 =
that can be solved numerically by the Newton-Raphson iterative algorithm (see Eq.
55). The concentration of macromolecule-ligand complexes can be readily calculated

from the free macromolecule and ligands concentrations, [P] and [L].

If these calculations are performed for each injection j, then, the normalized heat
associated with injection j along the calorimetric titration is given by:
1 v;
Q=55 | Vo (AHO ([Pz]j —[P)j (1 - V—’)) + AH,, ([PL]; —[PL)j- (1-

vj[L 0

0

;)) + (AHgy + AHo) <[P2L] j= [Pl (1= V—’)) + (AHzz + AHo) ([PszL- -

[P2L2]j—1 (1 - %))) + qa (105)
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where the dimerization enthalpies are considered per dimer, and the non-linear least
squares regression analysis allows estimating the thermodynamic binding parameters.
This model has been recently employed to characterize the coupling between ligand

binding and monomer-dimer equilibrium in B-lactoglobulin [44].

Although a homodimeric macromolecule with a binding site for a ligand en each
monomer has been considered, the complexity of the system can be increased: 1)
heterodimeric molecule; 2) higher self-association orders (e.g. trimer, tetramer, etc.);

and 3) higher number of binding sites per macromolecule subunit.

Discussion

The binding polynomial was introduced several decades ago for describing binding
interactions in biological systems. This concept allows handling systems of different
complexity levels in a simple and general manner. However, its implementation for ITC
data analysis (and other binding techniques) has been considered somewhat difficult
and the modeling and the data analysis strategies for different biological systems
found in the literature lack uniformity, with many system-specific approaches. The
purpose of this article is to provide a unified framework, based on the binding
polynomial, revealing the versatility of this concept for the mathematical description

of biological systems and the data analysis in ITC.

Being ITC a finite-differences technique (finite increments or changes in
concentrations, average enthalpy and saturation fraction), the formalism is defined in
terms of finite-differences and incremental quotients. Other approaches defined in
terms of differential equations or derivatives do not present any real advantage and,
furthermore, do not resemble the real experimental scenario (there are no continuous
changes in the variables) [45-47]. Just consider, for example, a given experimental set-
up where the number of injections is 4-fold larger and the injection volume is 4-fold
smaller. In that case, not only the titration has a different appearance (there are more
points along the saturation progress), but the relative errors, as well as the
uncertainties in the estimated thermodynamic parameters, are larger. On the contrary,

spectroscopic techniques provide a different experimental situation, where an
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arbitrary number of titrant additions does not change the appearance of the titration

curve (other than increasing the number of experimental points).

The binding equations, arising from the binding polynomial (chemical equilibrium)
and the mass conservation principle, lead to a single polynomial equation with a free
concentration as unknown (e.g. [P] or [L]) or a set of non-linear equations with all free
concentrations as unknowns ([P], [L]...). These equations can only be solved analytically
for simple systems or quasi-simple approximations of complex systems by simple
systems under certain conditions. However, they can always be solved using numerical
methods. Among the usual numerical methods, Newton-Raphson method provides a
general, easily programmable recursive algorithm, no matter the degree of the
polynomial equation or the set of non-linear equations. To guarantee fast convergence
to the sought solution, appropriate seeding values in the recursive algorithm are
required. Because the binding equations must be solved at any injection for calculating
the free concentration of reactants after any injection, the free concentrations of
reactants after the previous injection are a good choice as seeding values (that is, the

free concentrations of reactants after two consecutive injections are fairly close).

A normalization parameter N is usually introduced as a factor for the nominal
concentration of macromolecule. This parameter accounts for the percentage of active
(binding competent) fraction of macromolecule; due to partial unfolding or misfolding,
or even impurities, macromolecule concentration determined by spectrophotometric
methods may be affected by a significant uncertainty. If the concentration of ligand
(usually a low molecular weight chemical) can be precisely determined, it can be

employed as a calibrating (“titrating”) solution for the macromolecule.

As it has been shown with many examples, the mathematical framework can be
applied to any biological system (e.g. homotropic and heterotropic interactions,
allosteric and polysteric systems). Thus, the level of complexity in the biological system
is reflected in the number of binding parameters and the strategies required for
reliably estimating those binding parameters (e.g. need for binary titrations when

studying ternary interactions, or need for a self-dissociation dilution titration when
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studying self-association coupled to ligand binding), but it is not reflected in the
complexity of the mathematical treatment or in a system-specific approach. For
example, homotropic cooperativity is mathematically easier than heterotropic
cooperativity (homotropy with n = 2 leads to a cubic equation, but heterotropy with n
= 1 leads to a quintic equation); however, the mathematical descriptions based on the
binding polynomial and solving the binding equations applying the Newton-Raphson

method are similar in complexity.

In addition, this mathematical framework is independent of the experimental set-
up of the titration (e.g. direct or reverse titration, competitive binding with competing
ligand in cell or syringe), because the binding equations are the same; the differences
are only concerned with the calculation of the total concentrations of both reactants
(whether a reactant is initially placed in the syringe or the cell) and the heat

normalization.

The data analysis should be first performed based on the phenomenological
overall parameters (association constants and binding enthalpies). Then, the
appropriate model based on the microscopic site-specific binding parameters can be
discriminated and defined. Transformation equations between parameters
corresponding to the phenomenological model and the site-specific model can be
employed or, alternatively, the data analysis can be performed using the site-specific
binding polynomial. The transformation equations relating equilibrium constants from
different models can be used together with the van’t Hoff equation to obtain the
transformation equations for the corresponding binding enthalpies. Thus, given a

certain relationship between association constants:

B = F({k,)) (106)
the relationship between the associated binding enthalpies is given by:

_ 2 (B _ 5 (0nF({kq}) _
AH = RT? (22 )p.m.m,... RT? (ZE )p.m.m,... G({ahg), {15} (107)

For example, the step-wise association constant K; is equal to £ / f1, the ratio of two
consecutive overall association constants; then, the step-wise binding enthalpy

associated with K; is equal to AH; — AH;4, the difference between two consecutive
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overall binding enthalpies. Or, the second-order overall association constant f, is
equal to ak® in the PKNF model for two cooperative binding sites; then, the overall

binding enthalpy AH, is equal to 2AH + Ah.

As in many other techniques, the combined use of a set of titrations (e.g. direct
and reverse titrations, titrations performed at different macromolecule
concentrations), or even adding more experimental techniques (e.g. spectroscopy,
ultracentrifugation, X-ray diffraction, small-angle X-ray scattering) can be very helpful
in properly defining the binding model for the biological system and reliably

determining the binding parameters [14,22,48].

In certain circumstances there may be two types of binding macromolecules in the
cell. In that case, the same formalism can be employed with a binding polynomial for
each type of macromolecule, Z; and Z,, from which:

from which:

[Pl]T = [Pl]Zl

[PZ]T = [Pz]Zz (108)
(Ll = LL1+ [Pl]T% + [lerzlf—nzf = [L] + [P1][L] aaiL + [P,][L] aaiL

and the same procedure can be followed finalizing in the expression for the normalized

heat associated with injection j along the calorimetric titration:

Q= — (VO (AH1 <[P1L]j —[P,L];—4 (1 - Z—;)) + AH, ([PZL],- — [PoL]j-1 (1 -

vj[L]o

%))) + qd) (109)

and the non-linear least squares regression analysis allows estimating the
thermodynamic binding parameters. This scheme has been employed for estimating
the binding parameters in protein-metal interaction eliminating the need for previous
ion removal from the protein, either injecting metal solution into a protein solution
with chelator excess, or injecting the chelator into a protein solution with metal excess

[49-51].
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Complex biological models can be, under certain circumstances, approximated by
a quasi-simple model based on apparent binding parameters (as seen above for
cooperative and competitive ligands). For example, a macromolecule exhibiting a
conformational equilibrium between two conformational states with different
affinities (f; and f) for a single ligand can be described by the following binding
polynomial (see Eq. 21):
Z=1+pB[L]+y(@+BILD (110)
from which:

- B1[L]+yB>[L]
LB ™ 148, [LI+y(1+B,ILD)
_ B1[LIAH +yAHy +yB,[L](AH, +AH,)
(AH) = 1481 [L]+y(1+B2[L])

(111)

and the description of the system explicitly includes the conformational equilibrium
parameters (y AH,). However, apparent binding parameters for the ligand can be
obtained from the previous expressions [3,25,52]:

B1+vB2

app — =1 P2

B T+y

AHapp — BlAH1+Vﬁ2(AH2+AHy) _ LAH
B1+vB2 1+y 14

where the conformational equilibrium parameters are implicitly included in the

(112)

apparent ligand binding parameters. The binding polynomial can now be written as:

Z=1+ —(ﬁlliyfz) [L] = 1+ BP[L] (113)

This expression of the binding polynomial for the quasi-simple system has been
obtained applying a normalization factor equal to the sum of the statistical weights of
ligand-free macromolecular species (which is equivalent to taking the ensemble of L-

free macromolecular states as a reference). From this:

- BPPL]
LB ™ 14papp[L]
(AH) = L0\ papp (114)
1+paPP[L]

Thus, if Z can be transformed to the form Z = 1 + S°[L] through an appropriate
normalization, the system can be substituted by a quasi-simple system for a
macromolecule with just a single ligand binding site [25]. The system is simplified at
the expense of using more complex binding parameters (in fact, f” and AH are not

intrinsic binding parameters, because in general they will be dependent on other
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intrinsic binding parameters, conformational parameters, and ligand and
macromolecule concentrations). However, even if the model can be simplified and
substituted by a quasi-simple model, sometimes that model cannot be employed (e.g.
a cooperative ligand B is placed at a subsaturating concentration in the calorimetric
cell, or two competitive ligands are injected simultaneously into a macromolecule

solution [39]).

As it has been mentioned before, when Z contains more than one L-free
macromolecular states, it is usual to normalize Z according to that subset of non-
ligated states and express Z in terms of apparent overall association constants. For
example, in the case of a macromolecule binding two different ligands A and B, from
the point of view of ligand A we can normalize using the subset of A-free

macromolecular states (see Eq. 15-16):

T2 BsolAl® B¢ Br/s[BIE
Z = 0 ;0713 ﬁt/z[;]tt/s = Z Bso ZsB [A]s — 22;40 gpp [A]s (115)
t=0

where Z s is the binding sub-polynomial for ligand B restricted to the sub-ensemble of

sA-ligated species. From this:

app :850 Z
amﬁs“””
(W)T,p,... = Nspp — Nopg = ANgpp (116)
app
RT2 (%) = AHJPP = AHy + (AH, ) — (AH )
T  J(B)p,.. '

where n;gg is the average number of ligand B molecules bound in the sub-ensemble of
sA-ligated species, AH; is the binding enthalpy for the complex PAs, and <AH; g> is the
average binding enthalpy for ligand B within the sub-ensemble of sA-ligated species.
These are well-known linkage relationships (e.g. pH dependency of ligand binding
parameters due to coupling of proton exchange at ionizable groups) [3,25]. In the case
of a macromolecule exhibiting several conformational states we may normalize Z using

the L-free macromolecular states (see Eq. 18-19):

7 = ZEoZiolslll _ gn Eobsits [p1i _ ym pavp(p )i (117)
Ys=oVs I5tos

where B is the ensemble-averaged overall association constant. Or, alternatively,

we may normalize Z using the subset of macromolecular states with s =0
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— 221:027{;0 .Bsi]/s[L]i _m Zs
Z =SS = ZssoYs (118)

where Z; is the binding sub-polynomial restricted to the s macromolecular
conformation. This arrangement of the partition function is the one employed for
studying the conformational equilibrium of a macromolecule coupled to ligand binding

(e.g. thermal or chemical stability as a function of ligand concentration) [3,53,54].

Even if the system is not approximated by a quasi-simple system, some
assumptions can be made in order to simplify the model and reduce the number of
possible macromolecular states (regarding ligand binding equilibrium, as well as
macromolecular conformational and self-association equilibria), reducing also the
number of parameters to be estimated. For instance, in the previous example we
might consider the ligand does not bind to the low binding affinity conformational
state of the macromolecule (£, = 0 in Eq. 108-111) [55,56]. In the macromolecule
exhibiting a self-association equilibrium coupled to ligand binding we might consider
the ligand does not bind to the monomer or to the dimer, by eliminating the
corresponding terms in the binding polynomial (Eg. 99). Another example is the model
for obligate binding order or conditional binding in which ligand B cannot bind unless
ligand A is bound; this is a special case of cooperative ligands (eliminating the third
term in the right hand side in Eq. 65) and has been applied to determining the

energetics of phosphate ion binding to a protease-inhibitor complex [57].

A typical example is the macromolecule with n identical binding sites exhibiting
maximal positive cooperativity (£ = 0, for i = 1,..,n-1). In this case the binding
polynomial is given by:

Z=1+pB,[L]" (119)
where all intermediate ligation states are neglected (maximal positive cooperativity),

from which:

Bl
B = g

_ _BalL]"
(AH) = T AH,

(120)

Then, the macromolecule can populate two ligation states, either free or bound to n

ligands, and the Hill coefficient is equal to n. Obviously, this kind of approximation is
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more legitimate the larger the cooperativity effect. This approach has been applied to
the interaction of ecarpholin S, a phospholipase from a snake venom, with two binding

sites exhibiting a Hill coefficient ny = 1.6 for its inhibitor suramin [58].

Models even more complex than those described here can be considered under
the same formalism. For example, a binding polynomial can be defined for cooperative
and non-cooperative binding to linear lattice-like macromolecules with overlapping
ligand binding sites, leading to a high degree polynomial that under certain conditions
can be truncated to a fifth-degree polynomial [59,60]. An approach based on
equivalent binding equations (chemical equilibrium and mass conservation) has been
employed for cooperative and non-cooperative ligand binding to DNA or other linear

polymers [61-65].

Finally, some words of caution about the selection of the most suitable model. The
estimated overall (or step-wise) association constants, together with extra-
thermodynamic information (e.g. structural or kinetic data) are instrumental in
discriminating the best binding model. Sometimes two models can be equivalent, that
is, they give rise to mathematically identical equations, but they differ in the
mechanistic description of the binding process and the set (number) of
thermodynamic parameters, which is a decisive factor for the capability of
independently determining all the associated parameters. For example, the MWC
model for a macromolecule with two binding sites is equivalent to the KNF model
(except for the fact that the MWC model does not explain negative cooperativity), but
the MWC model has three equilibrium constants (two association constants and one
conformational constant), while the KNF model has two equilibrium constants (one
association constant and one conformational/cooperativity constant). From one
titration all parameters in the KNF model can be determined, but not in the MWC
model. Thus, in general, sophisticated models can be developed accounting for subtle
mechanistic or configurational interaction details, but it may be difficult to estimate
many parameters experimentally, in particular if the number of experimental data
along the titration does not provide sufficient resolution level. This potential problem

can be minimized if sets of titrations performed under different conditions (e.g.
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different concentrations of reactants) are globally analyzed. In addition, there are
statistical parametric and non-parametric tests for comparing different models and the
selection of optimal models from experimental data (e.g. parametric F-test for

comparing nested models, non-parametric Akaike’s information criterion).

Appendix

In order to show how to implement the described formalism, a comparison with
the traditional method is provided for the simplest case: a macromolecule with a single
ligand binding site. This system is represented by an association constant £ and a

binding enthalpy AH.

From simple chemical equilibrium considerations, the concentration of complex PL
can be calculated from the total concentrations of macromolecule and ligand by

solving a quadratic equation:

1+B([P]T+[L]T)—J (1+B(PIr+[L1p)* ~4B2[PlrlLlr
2

Then, the code in Origin for the fitting routine can be written as follows (code 1):

[PL] =

(A1)

a=1+beta*(Ptb+Ltb);

b=4*beta”2*Ptb*Ltb;

PLb=(a-sgrt(a”2-b))/(2*beta);

a=1+beta*(Pta+Lta);

b=4*beta”2*Pta*Lta;

PLa=(a-sqrt(a”2-b))/(2*beta);

NDH=(V0*(dH*(PLa-PLb*Di)))/injv/Lsyr;

where Ptb and Pta are the total concentrations of macromolecule before and after a
given injection, Ltb and Lta are the total concentrations of ligand before and after the
injection, PLb and PLa are the concentrations of macromolecule-ligand complex before
and after a given injection, VO is the cell volume, Di is the dilution factor, injv is the
injection volume, Lsyr is the concentration of ligand in the syringe and NDH is the
normalized heat effect associated with that injection. We may include the parameter n

as a factor multiplying [P]rin Eq. A1 or when previously calculating [P]r.
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Applying the general formalism (Eqgs. 42-46), the code in Origin for the fitting
routine based on the Newton-Raphson algorithm for solving the set of non-linear
equations obtained from the binding polynomial can be written as follows (code 2):
Lold=Lseed;

Pold=Pseed;

Lnew=Lold+0.00000001;

Pnew=Pold+0.00000001;

for(ii=1;(abs(Lnew-Lold)>tolerance | abs(Pnew-Pold)>tolerance) &&
iikmax_iterations;ii++) {

Lold=Lnew;

Pold=Pnew;

F1=-1*(Lold+beta*Pold*Lold-Ltb);

F2=-1*(Pold+beta*Pold*Lold-Ptb);

J11=1+beta*Pold;

J12=beta*Lold;

J21=beta*Pold;

J22=1+beta*Lold;

detJ=J11*J22-J12*)21;

detlL=F1*J22-F2*J12;

detP=-F1*J21+F2*J11;

Lnew=Lold+detL/detJ;

Pnew=Pold+detP/detJ;

Iy
PLb=beta*Pnew*Lnew;

Lold=Lseed;

Pold=Pseed;

Lnew=Lold+0.00000001;

Pnew=Pold+0.00000001;

for(ii=1;(abs(Lnew-Lold)>tolerance | abs(Pnew-Pold)>tolerance) &&
iikmax_iterations;ii++) {

Lold=Lnew;

Pold=Pnew;
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F1=-1*(Lold+beta*Pold*Lold-Lta);

F2=-1*(Pold+beta*Pold*Lold-Pta);

J11=1+beta*Pold;

J12=beta*Lold;

J21=beta*Pold;

J22=1+beta*Lold;

detJ=J11*J22-J12*)21;

detlL=F1*J22-F2*)12;

detP=-F1*J21+F2*J11;

Lnew=Lold+detL/detJ;

Pnew=Pold+detP/detJ;

Iy
PLa=beta*Pnew*Lnew;
NDH=(VO*(dH*(PLa-PLb*Di)))/injv/Lsyr;
where lJij are the elements of the Jacobian matrix defined from the functions Fi, Lseed
and Pseed are initial values for the free concentration of macromolecule and ligand in
the Newton-Raphson algorithm, and the final values for the free concentration of

macromolecule and ligand are stored as Pnew and Lnew after convergence.

It is obvious that code 1 is much simpler than code 2, and, apparently, the general
formalism complicates the mathematics unnecessarily. However, the advantage of the
general formalism resides in its easy generalization, that can be fully recognized when
handling more complex systems which become intractable by analytical methods, but
very easy managed through numerical methods like the one implemented here. In
particular, the user must only modify the definitions of Fi and Jij according to the
system under study, as well as the calculation of macromolecule-ligand complexes

from the free, in the previous code.

Acknowledgements

This work was supported by Spanish Ministerio de Ciencia e Innovacién (BFU2010-
19451 to AVC, PTA2009-2341-I to SV), Miguel Servet Program from Instituto de Salud
Carlos 11l (CP07/00289 to OA), Fondo de Investigaciones Sanitarias (P110/00186 to OA),

42



Diputacién General de Aragdn (Protein Targets Group B89 to AVC, Digestive Pathology
Group B01 to OA).

43



Figure captions

Figure 1. Molar fractions of the different macromolecular species (P, PL, PL, and PL3) as
a function of n;g (Left) and n;g as a function of In[L] (Right) for a macromolecule with:
three identical and independent binding sites (continuous lines, f; = 3-10° M7, P =
3-10" M?, fs = 10" M3, ny = 1), three binding sites with negative homotropy (dashed
lines, B; = 3-10° M, 3, = 3-10" M?, 3 = 10"® M, ny = 0.65), and three binding sites
with positive homotropy (grey lines, f; = 3-10° M7, P = 3-108 M7, D5 = 10®° M3, ny =
1.65). As it can be seen on the left plot, the maximal value of the molar fraction y; is
reached when n g = i. Binding cooperativity is reflected in the departure of the molar
fractions of the intermediate ligation states from those corresponding to independent
ligand binding: negative cooperativity increases the population of intermediate states,
while positive cooperativity deplete those intermediate states. According to the values
of the overall association constants, in the negative homotropy case p,< p3 <1, and in
the positive homotropy case p, > p; > 1; therefore, the largest deviations from the
independent binding occurs in the formation of the complex PL,, which is easily
observed in the large differences observed in y; for the three scenarios, compared to
the smaller differences observed in y3. The inset shows the binding capacity for the
three cases, and the higher and lower binding capacity correspond to the positive and

negative homotropy case, respectively.

Figure 2. (Left) Calorimetric titration for EDTA interacting with calcium. Calcium (5
mM) was titrated into EDTA (0.4 mM). The experiment was performed in MES 10 mM,
pH 6, at 25°C. Data analysis was performed as explained in the text, providing the
following binding parameters: £ = 2.1+0.1:10° M, AH, = 4.0+0.1 kcal/mol. (Right)
Calorimetric titration for NS3 protease interacting with its inhibitor danoprevir.
Danoprevir (300 uM) was titrated into NS3 S139A (inactive) protease (20 uM). The
experiment was performed in Tris 10 mM pH 7, CHAPS 1%, DTT 2 mM, DMSO 1.5%,
glycerol 25%, at 25°C. Data analysis was performed as explained in the text, providing

the following binding parameters: £, = 7.4+0.5-10° M'l, AH4 =-12.540.2 kcal/mol.
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Figure 3. Calorimetric titrations for the NS3 protease-substrate-pNS4A system.
Substrate (150 uM) was titrated into NS3 S139A (inactive) protease (10 uM) or into an
NS3 protease solution (10 uM) with NS4A peptide (200 uM). Experiments were
performed in Tris 10 mM pH 7, CHAPS 1%, DTT 2 mM, glycerol 25%, at 25°C. Data
analysis was performed as explained in the text, providing the following parameters:
substrate interacting with inactive NS3 protease (closed circles; £ = 8.1+0.6-10° M7,
AH, = 3.9%0.2 kcal/mol), and substrate interacting with the NS4A-bound inactive
protease (open circles, cooperative interaction constant « = 5.9+0.7 and cooperative
binding enthalpy Ah = -7.940.3 kcal/mol). (Inset) The binding parameters for pNS4A
interacting with NS3 protease were previously independently determined under the
same conditions: [ = 8.9+0.8-10* M'l, AHg = -1.5+0.2 kcal/mol. If the approximate
model with a single binding site is used for the analysis of the substrate interacting
with NS4A-bound NS3 protease, the following apparent parameters are obtained for
the substrate interacting with the NS3 protease in the presence of pNS4A: S, =
4.240.3-10° M, AH,%P = -3.9+0.2 kcal/mol. Substrate and activator peptide pNS4A
show positive heterotropic cooperativity, with a cooperative Gibbs energy (Ag = -1.1
kcal/mol) partitioned into a favorable enthalpic contribution (Ah = -7.9 kcal/mol) and
an unfavorable entropic contribution (-TAs = 6.8 kcal/mol). With the simplified quasi-
simple model (Egs. 64 and 114) the apparent binding parameters for the substrate are
dependent on the concentration of pNS4A employed in the titration, whereas with the
exact ternary model the intrinsic cooperative parameters are true constants. In this
case, both sets of parameters are in agreement because pNS4A was employed at a

saturating concentration.

Figure 4. Calorimetric titrations for the EDTA-calcium-magnesium system. (Left)
calcium (480 uM) was titrated into EDTA (30 uM), (Middle) magnesium (500 uM) was
titrated into EDTA (30 uM), and (Right) calcium (480 puM) was titrated into EDTA (30
KUM) in the presence of magnesium (220 uM). Experiments were performed in Mops 10
mM pH 7, NaCl 150 mM, at 25°C. Data analysis was performed as explained in the text,
providing the following parameters: calcium interacting with EDTA, s = 1.1+0.1-10’ M
1 AH, = -5.240.2 kcal/mol; and magnesium interacting with EDTA, f5 = 1.5+0.1-10° M},
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AHg = 3.1+0.2 kcal/mol. The apparent parameters for calcium in the presence of
magnesium (220 uM) can be obtained using a simplified quasi-simple model: 5,*" =

3.1+0.2-10° M", AH,%" = -8.4+0.2 kcal/mol (in good agreement with Eqs. 74 and 114).
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