3,186 research outputs found
Cepheid Mass-loss and the Pulsation -- Evolutionary Mass Discrepancy
I investigate the discrepancy between the evolution and pulsation masses for
Cepheid variables. A number of recent works have proposed that non-canonical
mass-loss can account for the mass discrepancy. This mass-loss would be such
that a 5Mo star loses approximately 20% of its mass by arriving at the Cepheid
instability strip; a 14Mo star, none. Such findings would pose a serious
challenge to our understanding of mass-loss. I revisit these results in light
of the Padova stellar evolutionary models and find evolutionary masses are
()% greater than pulsation masses for Cepheids between 5<M/Mo<14. I
find that mild internal mixing in the main-sequence progenitor of the Cepheid
are able to account for this mass discrepancy.Comment: 15 pages, 3 figures, ApJ accepte
On the micro mechanics of one-dimensional normal compression
Discrete-element modelling has been used to investigate the micro mechanics of one-dimensional compression. One-dimensional compression is modelled in three dimensions using an oedometer and a large number of particles, and without the use of agglomerates. The fracture of a particle is governed by the octahedral shear stress within the particle due to the multiple contacts and a Weibull distribution of strengths. Different fracture mechanisms are considered, and the influence of the distribution of fragments produced for each fracture on the global particle size distribution and the slope of the normal compression line is investigated. Using the discrete-element method, compression is related to the evolution of a fractal distribution of particles. The compression index is found to be solely a function of the strengths of the particles as a function of size
Muon Spin Relaxation Studies of Superconductivity in a Crystalline Array of Weakly Coupled Metal Nanoparticles
We report Muon Spin Relaxation studies in weak transverse fields of the
superconductivity in the metal cluster compound,
Ga[N(SiMe)]-LiBr(thf)2toluene. The temperature and field dependence of the muon spin relaxation
rate and Knight shift clearly evidence type II bulk superconductivity below
K, with T,
T, and weak flux pinning. The data
are well described by the s-wave BCS model with weak electron-phonon coupling
in the clean limit. A qualitative explanation for the conduction mechanism in
this novel type of narrow band superconductor is presented.Comment: 4 figures, 5 page
Superconductivity in a Molecular Metal Cluster Compound
Compelling evidence for band-type conductivity and even bulk
superconductivity below K has been found in
Ga-NMR experiments in crystalline ordered, giant Ga
cluster-compounds. This material appears to represent the first realization of
a theoretical model proposed by Friedel in 1992 for superconductivity in
ordered arrays of weakly coupled, identical metal nanoparticles.Comment: 5 pages, 4 figure
Constraints on the Formation of the Globular Cluster IC 4499 from Multi-Wavelength Photometry
We present new multiband photometry for the Galactic globular cluster IC 4499
extending well past the main sequence turn-off in the U, B, V, R, I, and DDO51
bands. This photometry is used to determine that IC4499 has an age of 12 pm 1
Gyr and a cluster reddening of E(B-V) = 0.22 pm 0.02. Hence, IC 4499 is coeval
with the majority of Galactic GCs, in contrast to suggestions of a younger age.
The density profile of the cluster is observed to not flatten out to at least
r~800 arcsec, implying that either the tidal radius of this cluster is larger
than previously estimated, or that IC 4499 is surrounded by a halo. Unlike the
situation in some other, more massive, globular clusters, no anomalous color
spreads in the UV are detected among the red giant branch stars. The small
uncertainties in our photometry should allow the detection of such signatures
apparently associated with variations of light elements within the cluster,
suggesting that IC 4499 consists of a single stellar population.Comment: accepted to MNRA
Use and management of pasture in the cerrado biome: Impacts on aggregation of an oxisol.
The objective of this study was to evaluate the physical quality of a dystrophic Oxisol in the Cerrado biome, by means of its aggregation, after 19 years of use and management with pasture. The treatments were soil with natural vegetation (CERR); and soil with Brachiaria decumbens cultivar Basilisk pasture, under the following four types of management: soil with maintenance-level fertilization, every two years, and with legumes (PAML); soil with maintenance-level fertilization, every two years (PAM); soil with fertilization only at implantation (PAI); and soil with degraded pasture without fertilization (PD). In November 2012, after 19 years of land use in the treatments, soil samples were collected at four locations per plot, and at two depths, 0 to 10 and 10 to 20 cm. The study evaluated the size distribution of air-dried aggregates and the distribution of water-stable aggregates, determining the water-stable weighted mean diameters (WMDws), the efficiency ratio of aggregates (ERA) and organic matter content of soil. The management of grassland with fertilizer favors the formation of larger aggregates in the soil, as well as WMDsw, ERA and the content of organic matter, improving soil physical quality, both in the 0 to 10 cm and in the 10 to 20 cm layer. Impacts on soil aggregates caused by the removal of native vegetation can be improved with the use of soil under pasture and managed with fertilization in the 10 to 20 cm layer
Chromatin to Clinic: The Molecular Rationale for PARP1 Inhibitor Function.
Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors were recently shown to have potential clinical impact in a number of disease settings, particularly as related to cancer therapy, treatment for cardiovascular dysfunction, and suppression of inflammation. The molecular basis for PARP1 inhibitor function is complex, and appears to depend on the dual roles of PARP1 in DNA damage repair and transcriptional regulation. Here, the mechanisms by which PARP-1 inhibitors elicit clinical response are discussed, and strategies for translating the preclinical elucidation of PARP-1 function into advances in disease management are reviewed
Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology
On the metallicity gradient of the Galactic disk
Aims: The iron abundance gradient in the Galactic stellar disk provides
fundamental constraints on the chemical evolution of this important Galaxy
component. However the spread around the mean slope is, at fixed Galactocentric
distance, larger than estimated uncertainties. Methods: To provide quantitative
constraints on these trends we adopted iron abundances for 265 classical
Cepheids (more than 50% of the currently known sample) based either on
high-resolution spectra or on photometric metallicity indices. Homogeneous
distances were estimated using near-infrared Period-Luminosity relations. The
sample covers the four disk quadrants and their Galactocentric distances range
from ~5 to ~17 kpc. Results: A linear regression over the entire sample
provides an iron gradient of -0.051+/-0.004 dex/kpc. The above slope agrees
quite well, within the errors, with previous estimates based either on Cepheids
or on open clusters covering similar Galactocentric distances. However, once we
split the sample in inner (Rg < 8 kpc) and outer disk Cepheids we found that
the slope (-0.130+/-0.015 dex/kpc) in the former region is ~3 times steeper
than the slope in the latter one (-0.042+/-0.004 dex/kpc). We found that in the
outer disk the radial distribution of metal-poor (MP, [Fe/H]<-0.02 dex) and
metal-rich (MR) Cepheids across the four disk quadrants does not show a clear
trend when moving from the innermost to the external disk regions. We also
found that the relative fractions of MP and MR Cepheids in the 1st and in the
3rd quadrant differ at 8 sigma (MP) and 15 sigma (MR) level.Comment: 6 pages, 6 figures, A&A accepte
- …