69 research outputs found

    Radio Jupiter after Voyager: An overview of the Planetary Radio Astronomy observations

    Get PDF
    Jupiter's low frequency radio emission morphology as observed by the Planetary Radio Astronomy (PRA) instrument onboard the Voyager spacecraft is reviewed. The PRA measurement capabilities and limitations are summarized following over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previous unrecognized emission components were discovered: broadband and narrow band kilometric emission and the lesser arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter and hectometer wavelength emission, which is believed to be almost exclusively in the form of complex but repeating arc structures in the frequency time domain, is described. Dramatic changes in the emission morphology of some components as a function of Sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in suit measurements of the Io plasma torus hot to cold electron density and temperature ratios are summarized

    Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    Get PDF
    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly

    VLBI observations of jupiter with the initial test station of LOFAR and the nancay decametric array

    Get PDF
    AIMS: To demonstrate and test the capability of the next generation of low-frequency radio telescopes to perform high resolution observations across intra-continental baselines. Jupiter's strong burst emission is used to perform broadband full signal cross-correlations on time intervals of up to hundreds of milliseconds. METHODS: Broadband VLBI observations at about 20 MHz on a baseline of ~50000 wavelengths were performed to achieve arcsecond angular resolution. LOFAR's Initial Test Station (LOFAR/ITS, The Netherlands) and the Nancay Decametric Array (NDA, France) digitize the measured electric field with 12 bit and 14 bit in a 40 MHz baseband. The fine structure in Jupiter's signal was used for data synchronization prior to correlation on the time-series data. RESULTS: Strong emission from Jupiter was detected during snapshots of a few seconds and detailed features down to microsecond time-scales were identified in dynamic spectra. Correlations of Jupiter's burst emission returned strong fringes on 1 ms time-scales over channels as narrow as a hundred kilohertz bandwidth. CONCLUSIONS: Long baseline interferometry is confirmed at low frequencies, in spite of phase shifts introduced by variations in ionospheric propagation characteristics. Phase coherence was preserved over tens to hundreds of milliseconds with a baseline of ~700 km. No significant variation with time was found in the correlations and an estimate for the fringe visibility of 1, suggested that the source was not resolved. The upper limit on the source region size of Jupiter Io-B S-bursts corresponds to an angular resolution of ~3 arcsec. Adding remote stations to the LOFAR network at baselines up to thousand kilometers will provide 10 times higher resolution down to an arcsecond.Comment: 6 pages, 4 figures. Nigl, A., Zarka, P., Kuijpers, J., Falcke, H., Baehren, L., VLBI observations of Jupiter with the Initial Test Station of LOFAR and the Nancay Decametric Array, A&A, 471, 1099-1104, accepted on 31/05/200

    Decay time of type III solar bursts observed at kilometric wavelengths

    Full text link
    Type III bursts were observed between 3.5 MHz and 50 kHz by the University of Michigan radio astronomy experiment aboard the OGO-5 satellite.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43731/1/11207_2004_Article_BF00156186.pd

    Geomagnetic origin of the radio emission from cosmic ray induced air showers observed by CODALEMA

    Get PDF
    The new setup of the CODALEMA experiment installed at the Radio Observatory in Nancay, France, is described. It includes broadband active dipole antennas and an extended and upgraded particle detector array. The latter gives access to the air shower energy, allowing us to compute the efficiency of the radio array as a function of energy. We also observe a large asymmetry in counting rates between showers coming from the North and the South in spite of the symmetry of the detector. The observed asymmetry can be interpreted as a signature of the geomagnetic origin of the air shower radio emission. A simple linear dependence of the electric field with respect to vxB is used which reproduces the angular dependencies of the number of radio events and their electric polarity.Comment: 9 pages, 15 figures, 1 tabl

    Quasi-periodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere

    Get PDF
    Cosmic rays and solar energetic particles may be accelerated to relativistic energies by shock waves in astrophysical plasmas. On the Sun, shocks and particle acceleration are often associated with the eruption of magnetized plasmoids, called coronal mass ejections (CMEs). However, the physical relationship between CMEs and shock particle acceleration is not well understood. Here, we use extreme ultraviolet, radio and white-light imaging of a solar eruptive event on 22 September 2011 to show that a CME-induced shock (Alfvén Mach number 2:4+0:7 -0:8) was coincident with a coronal wave and an intense metric radio burst generated by intermittent acceleration of electrons to kinetic energies of 2{46 keV (0.1{0.4 c). Our observations show that plasmoid-driven quasi-perpendicular shocks are capable of producing quasi-periodic acceleration of electrons, an effect consistent with a turbulent or rippled plasma shock surface

    Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

    Full text link
    • 

    corecore