2,580 research outputs found

    Quasi-free (p,2p) and (p,pn) reactions with unstable nuclei

    Get PDF
    We study (p,2p) and (p,pn) reactions at proton energies in the range of 100 MeV -- 1 GeV. Our purpose is to explore the most sensitive observables in unpolarized reactions with inverse kinematics involving radioactive nuclei. We formulate a model based on the eikonal theory to describe total cross sections and momentum distributions of the recoiled residual nucleus. The model is similar to the one adopted for knockout reactions with heavy ions. We show that momentum distributions are sensitive to the angular momentum of the ejected nucleon which can be used as an spectroscopic tool. The total cross sections are sensitive to the nucleon separation energies and to multiple scattering effects. Our calculations also indicate that a beam energy around 500 MeV/nucleon has a smaller dependence on the anisotropy of the nucleon-nucleon elastic scattering.Comment: 17 pages, 12 figures, Accepted for publication in the Physical review

    On the Shapley-like Payoff Mechanisms in Peer-Assisted Services with Multiple Content Providers

    Full text link
    This paper studies an incentive structure for cooperation and its stability in peer-assisted services when there exist multiple content providers, using a coalition game theoretic approach. We first consider a generalized coalition structure consisting of multiple providers with many assisting peers, where peers assist providers to reduce the operational cost in content distribution. To distribute the profit from cost reduction to players (i.e., providers and peers), we then establish a generalized formula for individual payoffs when a "Shapley-like" payoff mechanism is adopted. We show that the grand coalition is unstable, even when the operational cost functions are concave, which is in sharp contrast to the recently studied case of a single provider where the grand coalition is stable. We also show that irrespective of stability of the grand coalition, there always exist coalition structures which are not convergent to the grand coalition. Our results give us an important insight that a provider does not tend to cooperate with other providers in peer-assisted services, and be separated from them. To further study the case of the separated providers, three examples are presented; (i) underpaid peers, (ii) service monopoly, and (iii) oscillatory coalition structure. Our study opens many new questions such as realistic and efficient incentive structures and the tradeoffs between fairness and individual providers' competition in peer-assisted services.Comment: 13 pages, 4 figures, an extended version of the paper to be presented in ICST GameNets 2011, Shanghai, China, April 201

    Dispossession of the Tribes

    Get PDF

    Dispossession of the Tribes

    Full text link

    Receiver-Based Auralization of Broadband Aircraft Flyover Noise Using the NASA Auralization Framework

    Get PDF
    The NASA Auralization Framework (NAF) consists of a set of dynamic link libraries (DLLs) to facilitate auralization of aircraft noise. Advanced capabilities for synthesis, propagation, and external interfaces are provided by the NAF Advanced Plugin Libraries (APL); a separate set of DLLs that are made accessible through the NAFs plugin architecture. In the typical time domain use case, the sound is first synthesized at the source location based on a source noise definition, and is then propagated in the time domain to a receiver on or near the ground. Alternatively, it may be desirable to synthesize the sound at the receiver, after it has been propagated in the frequency domain, e.g., when the source definition is inaccessible or when alternative propagation methods are needed. Receiver-based auralization requires three new developments in the NAF APL: a component plugin to interpolate the propagated noise spectra as a function of time for input to sound synthesis, and a path finder and path traversal plugin to calculate the effects of the differential propagation path length between the direct and ground reflected rays. This paper describes those developments and demonstrates their use in the auralization of broadband flyover noise

    When Can Limited Randomness Be Used in Repeated Games?

    Full text link
    The central result of classical game theory states that every finite normal form game has a Nash equilibrium, provided that players are allowed to use randomized (mixed) strategies. However, in practice, humans are known to be bad at generating random-like sequences, and true random bits may be unavailable. Even if the players have access to enough random bits for a single instance of the game their randomness might be insufficient if the game is played many times. In this work, we ask whether randomness is necessary for equilibria to exist in finitely repeated games. We show that for a large class of games containing arbitrary two-player zero-sum games, approximate Nash equilibria of the nn-stage repeated version of the game exist if and only if both players have Ω(n)\Omega(n) random bits. In contrast, we show that there exists a class of games for which no equilibrium exists in pure strategies, yet the nn-stage repeated version of the game has an exact Nash equilibrium in which each player uses only a constant number of random bits. When the players are assumed to be computationally bounded, if cryptographic pseudorandom generators (or, equivalently, one-way functions) exist, then the players can base their strategies on "random-like" sequences derived from only a small number of truly random bits. We show that, in contrast, in repeated two-player zero-sum games, if pseudorandom generators \emph{do not} exist, then Ω(n)\Omega(n) random bits remain necessary for equilibria to exist

    How Transient Patches Affect Population Dynamics: The Case of Hypoxia and Blue Crabs

    Get PDF
    Transient low-oxygen patches may have important consequences for the population dynamics of estuarine species. We investigated whether these transient hypoxic patches altered population dynamics of the commercially important blue crab (Callinectes sapidus) and assessed two alternative hypotheses for the causal mechanism. One hypothesis is that temporary reductions in habitat due to hypoxia increase cannibalism. The second hypothesis is that crab population dynamics result from food limitation caused by hypoxia-induced mortality of the benthos. We developed a spatially explicit individual-based model of blue crabs in a hierarchical framework to connect the autoecology of crabs with the spatial and temporal dynamics of their physical and biological environments. Three primary scenarios were run to examine the interactive effects of (1) hypoxic extent vs. static and transient patches, (2) hypoxic extent vs. prey abundance, and (3) hypoxic extent vs. cannibalism potential. Static patches resulted in populations limited by egg production and recruitment whereas transient patches led to populations limited by the effects of cannibalism and patch interactions. Crab survivorship was greatest for simulations with the largest hypoxic patches which also had the lowest prey abundance and lowest crab densities. In these simulations, nearly all crab mortality was accounted for by aggression, not starvation. In addition, increased prey abundance had little influence on crab abundance and dynamics, and massive reductions in prey abundance (\u3e 50%) were necessary to decrease crab abundance, survival, and egg production. Our analyses suggest that cannibalism coupled with decreased egg production determined key aspects of crab demography. Specifically, decreased cannibalism potential resulted in a food-limited crab population with long development times and high adult crab densities whereas increased cannibalism potential led to low adult crab densities with higher individual egg production rates. Our analyses identified several key knowledge gaps, including the nature of crab-crab cannibalism and the role of refuges from predation. Several experiments are suggested to test model predictions and to improve understanding of ecosystem-population linkages for this estuarine species

    Anharmonicities of giant dipole excitations

    Get PDF
    The role of anharmonic effects on the excitation of the double giant dipole resonance is investigated in a simple macroscopic model.Perturbation theory is used to find energies and wave functions of the anharmonic ascillator.The cross sections for the electromagnetic excitation of the one- and two-phonon giant dipole resonances in energetic heavy-ion collisions are then evaluated through a semiclassical coupled-channel calculation.It is argued that the variations of the strength of the anharmonic potential should be combined with appropriate changes in the oscillator frequency,in order to keep the giant dipole resonance energy consistent with the experimental value.When this is taken into account,the effects of anharmonicities on the double giant dipole resonance excitation probabilities are small and cannot account for the well-known discrepancy between theory and experiment

    Efficient Equilibria in Polymatrix Coordination Games

    Get PDF
    We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study α\alpha-approximate kk-equilibria of these games, i.e., outcomes where no group of at most kk players can deviate such that each member increases his payoff by at least a factor α\alpha. We prove that for α≥2\alpha \ge 2 these games have the finite coalitional improvement property (and thus α\alpha-approximate kk-equilibria exist), while for α<2\alpha < 2 this property does not hold. Further, we derive an almost tight bound of 2α(n−1)/(k−1)2\alpha(n-1)/(k-1) on the price of anarchy, where nn is the number of players; in particular, it scales from unbounded for pure Nash equilibria (k=1)k = 1) to 2α2\alpha for strong equilibria (k=nk = n). We also settle the complexity of several problems related to the verification and existence of these equilibria. Finally, we investigate natural means to reduce the inefficiency of Nash equilibria. Most promisingly, we show that by fixing the strategies of kk players the price of anarchy can be reduced to n/kn/k (and this bound is tight)

    Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    Get PDF
    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future
    • …
    corecore