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We study (p,2p) and (p,pn) reactions at proton energies in the range of 100 MeV–1 GeV. Our purpose is
to explore the most sensitive observables in unpolarized reactions with inverse kinematics involving radioactive
nuclei. We formulate a model based on the eikonal theory to describe total cross sections and momentum
distributions of the recoiled residual nucleus. The model is similar to the one adopted for knockout reactions with
heavy ions. We show that momentum distributions are sensitive to the angular momentum of the ejected nucleon
which can be used as an spectroscopic tool. The total cross sections are sensitive to the nucleon separation energies
and to multiple scattering effects. Our calculations also indicate that a beam energy around 500 MeV/nucleon
has a smaller dependence on the anisotropy of the nucleon-nucleon elastic scattering.
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I. INTRODUCTION

Quasifree (p, pN ) reactions (N = proton or neutron) rep-
resent one of the most common experimental tools to access
information on single-particle properties in nuclei. In quasifree
(p, pN ) scattering an incident proton of medium energy
(typically several hundred MeV) knocks out a bound nucleon.
The energy spectrum of the outgoing nucleons provides
information on the energy and other quantum numbers of
the struck nucleon in the nucleus. The shape of the angular
correlations of the outgoing nucleons, or the recoil momentum
of the nucleus, is connected to the momentum distribution of
the knocked-out nucleon. In the past four decades quasifree-
scattering experiments have been performed with this basic
purpose. For seminal reviews on (p,pn) reactions see, e.g.,
Refs. [1,2].

The theory developments in (p,2p) reactions have been
largely done in the past 50 years. Very few theorists still
work in this field, basically due to the decrease in the
number of experiments carried out in such a fashion. However,
the availability of high-energy radioactive beams allows in
principle to utilize the method of quasifree scattering in
inverse kinematics with hydrogen targets. This will open
huge possibilities to investigate properties of unstable nuclei
such as systematic studies of single-particle structure or
nucleon-nucleon correlations as a function of neutron-to-
proton asymmetry.

So far, knockout reactions using composite targets have
been used extensively to investigate the shell structure of rare
isotopes and many valuable results have been obtained [3,4].
Gade et al. [4] have discussed, for instance, the reduction
of spectroscopic strength in dependence on the asymmetry of
the neutron and proton Fermi energies deduced from measured
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knockout cross sections. Theoretically, such an effect is indeed
expected both for nuclei [5,6] and asymmetric nuclear matter
[7]; the predicted effects, however, cannot explain the data.

Quasifree scattering in inverse kinematics potentially pro-
vides a more sensitive tool to study such effects since the
reaction is less surface dominated. The possibility to detect
all outgoing particles can provide a kinematically complete
measurement of the reaction. At GSI, RIKEN, and other lab-
oratories, experiments are being planned to study such effects
more systematically and by applying a kinematically complete
measurement of quasifree knockout reactions [8–10], and first
pilot experiments were successful [10,11]. In order to extract
the physics observables from the measured (p,2p) and (p,pn)
cross sections, reaction theory plays a key role. However,
much of the theoretical expertise in this field was lost. It is
thus imperative for the community to concentrate theoretical
efforts in this problem with aim at the upcoming experiments
with radioactive beams.

The framework of the distorted wave impulse approxi-
mation (DWIA) is often used in numerical calculations of
(p, pN ) reactions [12,13]. This method assumes that the
dominant mechanism for the knockout reaction is due to
a single interaction between the incident particle and the
struck nucleon. The effect of the coherent multiple scattering
with the other nucleons is incorporated by using distorted
waves calculated from a mean nuclear potential, including
absorption due to excitations to other channels. One also needs
to account for the medium modification of interaction between
the incoming proton and the struck nucleon [14–22].

A part of the difficulties in studying (p,2p) and (p, pn)
reactions relies on the uncertainty of in-medium interactions,
and ambiguities from the reaction mechanism. Even in the
energy region of several hundred MeV, where the NN cross
section shows its minimum and the reaction mechanism is
expected to be simplest, multistep processes are not negligible
in general [23–27,35].

Measurements of polarization observables in quasielastic
(p,2p) reaction at intermediate energies give an even better
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information on nuclear shell structure and multiple scattering
effects, and also on possible modification of the nucleon-
nucleon (NN) interaction parameters in nuclear medium
[23,35]. Due to the nuclear spin-orbit coupling and absorption
of the projectile and secondary protons in the nuclear matter
the proton knocked out from a particular nuclear shell with
orbital moment l �= 0 can be polarized [1,2,26–29].

In the next sections we describe a formalism for quasifree
knockout reactions, first by describing the state-of-the-art
DWIA method which has been shown to reproduce experimen-
tal data with a good accuracy [1,2]. Then we introduce a few
simplifications which can be justified with the use of eikonal
scattering waves, appropriate for high energy scattering.
Finally, we apply the formalism to a detailed analysis of several
observables which can be assessed in spectroscopic studies of
rare nuclear isotopes probed with (p, pN ) reactions in inverse
kinematics.

II. QUASIFREE SCATTERING FORMALISM

A. Distorted wave impulse approximation

The standard DWIA expression for the quasifree cross
section is [1,2]

d3σ

dTNd�′
pd�N

= K ′ dσpN

d�
|F (Q)|2, (1)

where K ′ is a kinematic factor, |F (Q)|2 is the momentum
distribution of the knocked-out nucleon N in the nucleus,
and dσpN/d� is the free, or quasifree, pN cross section. In
this formalism the off-shell pN t-matrix is required, and the
factorized form that appears in Eq. (1) is valid only if off-shell
effects are not very important. In proton-induced knock-out
reactions at high energies this hypothesis has been confirmed
in previous works [1,2].

B. Transition amplitude

In the DWIA, the transition amplitude for the A(p, pN )B
reaction is given by [1]

Tp,pN =
√

S(lj )
〈
χ

(−)
k′

p
χ

(−)
kN

∣∣τpN

∣∣χ (+)
kp

ψjlm

〉
, (2)

where χ
(−)
k′

p
(χ (−)

kN
) is the distorted wave for an outgoing proton

(knocked-out nucleon) in the presence of the residual nucleus
B, χ

(+)
kp

is the distorted wave for an incoming proton in the
presence of the target nucleus A, and ψjlm is the bound state
wave function of the knocked-out nucleon;

√
S(lj ) is the

corresponding spectroscopic amplitude for a bound nucleon
with quantum numbers (lj ). Later, we will define the energy E
at which the two-body pN scattering matrix τpN is evaluated.

In coordinate space the matrix element given by Eq. (2) can
be written as

Tp,pN =
√

S(lj )
∫

d3r′
pBd3r′

NBd3rpAd3rNB

× τ (r′
pB, r′

NB; rpA, rNB)

×χ
(−)∗
k′

p
(r′

pB)χ (−)∗
kN

(r′
NB)χ (+)

kp
(rpA)ψjlm(rNB), (3)

where the scattering waves are normalized so that∫
d3rχ∗

k (r)χk′(r) = δ(k − k′),

and the bound-state wave function ψjlm is normalized to the
unity, ∫

d3r|ψjlm(r)|2 = 1.

An inspection of the integrand in Eq. (3) can help us to
eliminate several of the integrals. The coordinates of the proton
and the nucleon N are related through rpA = rpN + rNA. Since
the range of the pN interaction is much smaller than the
nuclear size, the integral in Eq. (3) will sample small values
of rpN such that rpN � rNA. The T matrix in Eq. (3) reduces
to an integral only over the rNB coordinate [1,2],

Tp,pN =
√

S(lj )τ (k′
pN, kpN ; E)

∫
d3rNB

×χ
(−)∗
k′

p
(rNB)χ (−)∗

kN
(rNB)χ (+)

kp
(αrNB)ψjlm(rNB), (4)

where α = (A − 1)/A and τ (k′
pN, kpN ; E) is the Fourier

transform of the pN t-matrix in Eq. (3).
The equation above has been the pillar of nearly all

numerical calculations of quasifree (p,2p) reactions. The
factorization of the matrix element in Eq. (4) is exact in
plane wave impulse approximation (PWIA). The argument
used to justify it in DWIA is that the two-body interaction
is of sufficiently short-range so that the distorted waves do
not change significantly over the range which contributes
significantly to the matrix element (3). Corrections to this
approximation have been studied by several authors (see,
e.g., [30]) and the results have been inconclusive in view
of the several other approximations that have been further
introduced.

Perhaps, the most serious approximation used to obtain
Eq. (4) is the assumption of quasifree binary scattering, i.e.,
without the effects of multiple collisions, and other many-body
effects such as antisymmetrization. The corrections due to
these effects have been also reported in the literature, e.g., in
Refs. [30,31]. The conclusions are that the deviations from
the impulse approximation might be important, but they are
also subject to uncertainty due to the use of several other
approximations. We will thus retain the DWIA as our tool
of choice, although we consider other corrections below. It
should be emphasized that nonlocality corrections and spin-
orbit terms in the optical potentials might play a relevant role
and are not considered here. In Ref. [32] it was shown that the
factorization approximation is valid for proton energies as low
as 75 MeV. We will consider much higher energies here for
which more simplifications can be done.

C. Cross section

The differential cross section is given by [33]

d3σ

dE′
pd�′

pd�N

= K

(2sp + 1)(2JA + 1)

∑
γ

|Tp,pN (γ )|2, (5)
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where E′
p is the proton energy in the final channel, and the

kinematical factor K is given by (here we use ki = pi/h̄) [34]

K = m2
pmNc6

(h̄c)6(2π )5

k′
pkN

kp

×
∣∣∣∣1 + EN

MB

[
1 − kp

kN

cos θN + k′
p

kN

cos(θp + θN )

]∣∣∣∣−1

.

(6)

We define a missing momentum, pm, a missing energy, εm,
and a missing mass, mm, by means of

εm = EN + E′
p − Ep − mN,

pm = kN + k′
p − kp, (7)

m2
m = ε2

m − p2
m.

The removal of the nucleon with momentum, pm, from the
nucleus implies a transfer of that three-momentum from the
nucleus to the observed proton and knockout nucleon final
state. For an exclusive reaction, only a small deficit in the
final-state energy, εm can be observed.

The spin (projection) quantum numbers of the particle p
and the target nucleus A in the initial state are sp(μp) and
JA(MA), respectively. Also, in the final state the quantum
numbers of the particles p and N and the residual nucleus B
are sp(μ′

p), sN (μN ), and JB(MB), respectively. The summation
(γ ) of the transition matrix Tp,pN in Eq. (5) is taken over the
spin components

γ = (μp,μ′
p, μN,MA,MB),

in the initial and final states. In the spin summation, the
transition matrices will have an explicit dependence on sp(μp,
μ′

p), sN (μN ), JA(MA), and JB(MB). Except for specific
cases, we will use the simpler notation j lm for the angular
momentum quantum numbers of the nucleons.

D. Plane wave impulse approximation

Physical insight is obtained by the use of the PWIA
approximation, i.e., no scattering wave distortion. The relation
between the pN scattering amplitude (in the pN c.m.) and the
pN t-matrix is (see, e.g., [35])

fpN (θ ; E) = −2π2m

h̄2 τ (k′
pN, kpN ; E), (8)

in terms of which the (elastic) scattering cross section in the
pN c.m. system is

dσpN

d�
= |fpN (θ ; E)|2. (9)

If the wave functions in Eq. (4) are replaced by plane waves,
one gets

T
(PWIA)
p,pN =

√
S(lj )τ (k′

pN, kpN ; E)
∫

d3r e−iQ.rψjlm(r), (10)

where Q is the missing momentum defined in Eq. (7), and
modified to

Q = k′
p + kN − αkp, (11)

FIG. 1. (Color online) The coordinates used in the text are shown.

where we introduced a correction α = (A − 1)/A to account
for c.m. motion [1]. Thus, we reproduce Eq. (1), with

F (Q) =
∫

d3r e−iQ.rψjlm(r) (12)

and the kinematic factor in Eq. (2) is given in terms of the
kinematic factor of Eq. (5) as

K ′ =
(

h̄2

2π2m

)2

K. (13)

Figure 1 show the coordinates used in the text.
Equation (10) is revealing: it tells us that in the lowest

approximation, the (p,2p) and (p, pn) cross sections are
proportional to the momentum distribution of nucleons inside
the target, determined by their wave function ψjlm(r). This
feature is common in many direct reactions as has been used
in the identification and interpretation of many remarkable
phenomena. For example, it has been used to identify “halo”
structure in exotic nuclei [36], in the interpretation of mo-
mentum distributions in knockout reactions [3,37–49], or in
the experimental analysis of transfer reactions, such as in the
Trojan horse method for nuclear astrophysics [50–56].

Evidently, the PWIA is not a good approximation. In fact,
distortions due to absorption and elastic scattering accounted
for in DWIA lead to a deviation from Eq. (10) and its simple
interpretation. But it is still useful for physical understanding of
most results. Although (p,2p) reactions have been carried out
with high-energy protons, only rather recently, eikonal waves,
and the Glauber treatment of multiple scattering have been
used to account for distortions and absorption [25–29]. One
probable reason is that measurements have been carried out
for large angle scattering and sometimes large energy transfer,
conditions that invalidate the use of the eikonal approximation,
although attempts along these lines have been tried already at
very early studies of (p,2p) reactions [57,58]. We will show
that the use of eikonal waves is still justified if care is taken to
separate incoming and outgoing channels. The advantage of
the eikonal formalism in comparison with traditional DWIA
formalism as described in Refs. [1,2] is enormous because
it allows a much easier treatment of the multiple-scattering
problem.
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E. Distorted waves

The PWIA approximation in Eq. (10) neglects important
absorption and refraction properties of the nucleon scattering
waves. In high-energy collisions, a much better result can be
obtained by using the eikonal approximation

χi(r)in(out) = exp
[
ikin(out)

i · r
]

× exp

[
− i

h̄v

∫ bin(out)

ain(out)

dz′U in(out)
i (r′)

]
, (14)

where r ≡ (b, z), v is the velocity of the nucleon i and Ui

is the optical potential accounting for all interactions of the
particle with the nucleus. The integration limits are ain(out) =
∓∞ and the location where the collision occurs inside the
projectile. An average of this position is done for each “impact
parameter” b.

For practical purposes, one can also write Eq. (14) as

χi(r)in(out) = Sin(out)(b) exp
[
ikin(out)

i · r
]
, (15)

with

Sin(out)(b) = exp

[
− i

h̄v

∫ bin(out)

ain(out)

dz′U in(out)
i (r′)

]
. (16)

We can interpret Sin(out)(b) as the “survival amplitudes” for the
incoming and outgoing waves. They measure the distortion
and absorption of the incoming proton and outgoing nucleons
as a function of their position in space.

For the real part of the optical potential, it is appropriate
to use a microscopic folding potential, such as the M3Y
[15] potential. The imaginary part of the optical potential,
corresponding to reaction loss to other channels, needs to be
introduced separately. For high energy collisions, this can be
done by assuming that absorption is due to incoherent binary
nucleon-nucleon collisions in the t-ρρ approximation [35].
Then the optical potential entering Eq. (14) reads

Ui(r) = UM3Y
i (r) + U

(c)
i (r)

− i
Ei

ki

σi(Ei)
∫

ρ
A(B) (r − r′)ρp(r′)d3r′, (17)

where U
(c)
i is the Coulomb potential between the nucleon i

and the nucleus A (entrance channel) or B = A − 1 (outgoing
channel). As the eikonal integral for the Coulomb field in
Eq. (14) diverges, a regularized Coulomb phase is used [46].
The last term of Eq. (17) relates the imaginary part of the
optical potential to the nucleon-nucleon cross section, which
depends on the incoming proton, or outgoing nucleon, energy
Ei . The integral contains the density of the nuclei A or B folded
with the nucleon density. The intrinsic matter density of the
proton (or neutron), ρp(r), is taken as an exponential function,
corresponding to a form factor ρp(q) = (1 + q2/a2)−1. We
will use a2 = 0.71 fm−2, for a proton rms radius of 0.87 fm.
The Fourier transforms for the nuclei A and B are obtained
from theoretical nuclear densities, calculated by using Hartree-
Fock + BCS theory according to Refs. [59,60].

F. Nucleon-nucleon cross sections

The free (total) nucleon-nucleon cross sections for E >
10 MeV were fitted to the data of the Particle Data Group [61].
The fits are given by the expressions (1) and (2) of Ref. [62].
Their analytical fit reproduces very well the experimental total
pp and pn cross sections in the energy interval 10 MeV �
Elab � 5 GeV.

Medium corrections of the nucleon-nucleon cross sections
can be relevant even at moderately high energies (Ep ∼
200 MeV). At higher energies, nuclear transparencies can be
nicely reproduced in Glauber calculations with free NN cross
sections—very small medium corrections cannot be excluded,
but the measured transparencies seem to indicate that they are
small. In (p, pN ) reactions the final proton or the knocked-out
nucleon can have much lower energies than the incident proton,
thus raising the importance of medium corrections. These
corrections for nucleon-nucleon scattering in nuclear matter
have been studied in, e.g., Refs. [62–69]. A calculation of
medium effects using Brueckner-Hartree-Fock method shows
that medium corrections are mainly due to Pauli blocking,
which can be linked to functions of the local nucleon densities
[69]. The analytical formulation developed in Refs. [62–64]
yields the following parametrization for the nucleon-nucleus
cross section in terms of the local nuclear density ρ (in fm−3),

σpN (Ei, ρ)

= σ
(free)
pN (Ei)

[
1 − 50.12ρ2/3

Ei

+ �

(
125.3ρ2/3

Ei

− 1

)

× 50.12ρ2/3

Ei

(
1 − Ei

125.3ρ2/3

)5/2
]
, (18)

where σpN (Ei) is the free cross section, Ei is the nucleon
laboratory energy in MeV, and � is the step function, i.e.,
�(x) = 0 if x < 0, and �(x) = 1 if x > 0. For an impact
parameter b the above cross section is averaged along the
incoming (outgoing) longitudinal coordinate z. This procedure
yields the values of σpn and σpp to be used in Eq. (17). Further,
the cross sections are averaged over the local number of protons
and of neutrons (local isospin average). The nucleon-nucleon
cross sections entering these expressions are given by

σp = NA

AA

σpn + ZA

AA

σpp, σp′ = NB

AB

σpn + ZB

AB

σpp,

and σn = NB

AB

σpp + ZB

AB

σpn, (19)

where (NA,ZA,AA) and (NB,ZB,AB) are the neutron,
charge, and mass numbers of the target and residual nucleus,
respectively. A similar isospin average is used to obtain
σN , depending if the outgoing nucleon is N = neutron or
N = proton.

III. MOMENTUM DISTRIBUTIONS

A. S matrices

Equation (14) allows a simple interpretation of the transition
matrix for the scattering of a high energy projectile by a proton
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in a (p, pN ) reaction (N = p, or N = n, for proton or neutron
knockout). We adopt a similar approach as in Refs. [37,38,40]
for knockout reactions in nucleus-nucleus collisions. The two-
body wave function for the incoming proton-nucleus channel is

�in = Sin exp(iαkp · r)ψjlm, (20)

where Sin is the scattering matrix (or survival amplitude) of
the incoming proton up to the collision point and ψjlm is
the single-particle wave function of the bound nucleon in its
initial state. Analogously, the two-body wave function for the
outgoing channel is given by

�out = S (p)
out S

(N)
out exp[i(kN + k′

p) · r], (21)

where Si
out is the scattering matrices (survival amplitudes) for

the outgoing nucleon i = p (proton) or N (knocked-out nu-
cleon). The scattering matrices (survival amplitudes) account
for the distortions in the incoming and outgoing channels,
as well as for the absorption in those channels. Absorption
means that if other binary collisions occur, other channels will
open and the contribution to the (p, pN ) channel will be lost.
Absorption is taken care of by the last term of Eq. (17). Note
that in separating the scattering into an incoming and outgoing
wave, the conditions of validity of the eikonal approximation,
Eq. (14), are satisfied, as long as the deviations from a straight-
line during the incoming and, separately, during the outgoing
channels, are kept small. The energy loss along these paths in
both channels is also expected to be small, the main energy
transfer occurring during the quasifree p, pN scattering.

The interpretation of the (p, pN ) reaction is now straight-
forward. The transition matrix is simply given by

T
(eik)
p,pN =

√
S(lj ) τ (k′

pN, kpN ; E)〈�f |�i〉,

where
√

S(lj ) is the amplitude to find the bound nucleon in the
orbital j lm, τ (k′

pN, kpN ; E) is the proton-nucleon scattering
amplitude, and 〈�f |�i〉 are overlap integrals of the initial and
final states of the nuclei A → B. In an independent particle
model with a spectator nucleus B one can write that 〈�f |�i〉 ≈
〈�out|�A〉. Apart from kinematical factors, the total scattering
amplitude is the product of the free nucleon-nucleon scattering
amplitude times the probability amplitude for finding inside
the nucleus a nucleon at position r. The equation above can
also be rewritten as

T
(eik)
p,pN =

√
S(lj )τ (k′

pN, kpN ; E)
∫

d3r e−iQ.rS(b, θ )ψjlm(r),

(22)

where Q is given by Eq. (11), θ ≡ θ (θ ′
p, θN ) is a function of

the angles θ ′
p and θN , and S(b, θ ) is the product of scattering

matrices for pA, p′B, and NB scattering, i.e.,

S(b, θ ) = SpA(Ep, b)Sp′B(E′
p, θ ′

p, b)SNB(EN, θN, b), (23)

with the scattering matrices for the initial proton-target (pA),
the final proton-residual nucleus (pB), and the nucleon-
residual nucleus (NB) scattering.

The semi-inclusive differential scattering cross section for
the reaction A(p, pN )B by removing a nucleon from the

orbital j l under conditions of fixed Q is given by

dσ = d3Q

(2π )3

1

2j + 1

(
−2π2mp

h̄2

)2 ∑
m

∣∣T (eik)
p,pN

∣∣2
, (24)

where d3Q/(2π )3 is the density of states and the sum takes care
of the average over all magnetic substates of the bound-state
wave function ψjlm. In the last equality, we have made use of
the Eq. (8).

We perform an average of dσpN/d� and the scattering
matrices over all possible energies of the final proton and
nucleon which lead to the momentum transfer Q. Hence,
our differential cross section in the distorted wave impulse
approximation (DWIA) is given by(

dσ

d3Q

)
DWIA

= 1

(2π )3

S(lj )

2j + 1

∑
m

〈
dσpN

d�

〉
Q

×
∣∣∣∣ ∫ d3r e−iQ.r〈S(b)〉Qψjlm(r)

∣∣∣∣2

. (25)

Here the S matrix is also averaged over all pp′ scattering angles
leading to the same magnitude of the momentum transfer Q.
Equation (25) is our starting formula for the calculations of
the momentum distributions of the recoiled fragments.

We neglect the fact that the momenta of the quasifree
matrix element do not occur in the free scattering because
of the difference in energy conservation between the two
cases. This difference is caused by the nonzero value of the
separation energy in the quasifree scattering and by the energy
and momentum carried by the recoiling nucleus. In other
words, dσpN/d� in Eq. (24) is a half-off-the-energy-shell
cross section. In non-relativistic terms, the off-shellness is
because energy conservation in the (p, 2p) or (p, pn) vertex
receive corrections of the form −SN + p2

m/2MB , where pm

is the missing momentum, or recoil momentum of nucleus
B = A − 1 given by Eq. (7) and SN is the nucleon separation
energy. Due to this mismatch, there is a certain arbitrariness in
chosing the value of dσpN/d� in Eq. (1). This is an amount
SN + p2

m(1/mN − 1/MB)/2 off shell. The importance of off-
energy-shell effects has been investigated in Refs. [12,70,71].
The conclusion is that off-energy-shell effects are small and
can be neglected. Thus, the standard prescription is to replace
dσpN/d� by the measured on-energy-shell cross section, i.e.,
the elastic pN scattering. This approximation amounts only to
a few percent uncertainty as long as one considers quasifree
processes for proton energies greater than 200 MeV [1,72].

The free dσpN/d� cross section shows a consider-
able anisotropy in the laboratory energy range of Ep =
200–1000 MeV. Phase-shift analyses of pp and pn elastic
scattering cross sections are available (e.g., Refs. [73,74]),
yielding elaborate parametrizations that are generally in good
agreement with the data [75]. We take into account the
angular anisotropy and the parametrizations by using a fit to
the experimental differential nucleon-nucleon cross sections
as explained in Ref. [75]. The angular distributions were
obtained using the computer code SAID, which implements
a comprehensive phase-shift analysis that encompasses the
world elastic pp and pn scattering data [74].
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B. Single particle wave functions

If the nuclear states are assumed to be independent on the
total angular momentum of the residual nucleus, one can write

ψjlm = ulj (r)

r

∑
ml ms

〈lmlsms |jm〉Ylml
( r̂ )χms

, (26)

where 〈lmlsms |jm〉 are Clebsch-Gordan coefficients, Ylml
are

spherical harmonics, and χms
are spinors. The radial wave

function is normalized so that
∫
dr|ulj (r)|2 = 1. These wave

functions are calculated using a Woods-Saxon potential with
central, surface, and spin-orbit parts (see, e.g., [46]). The
integral in Eq. (25) has cylindrical symmetry which can be
exploited for practical purposes to reduce it to a double-fold
integral (on b and z, if the wave function has spherical
symmetry). In this case one gets

G(Q) =
∫

d3r e−iQ.r〈S(b)〉Qψjlm(r)

= 2π

∫ ∞

0
db b〈S(b)〉Q

∫ ∞

−∞
dz exp[−iQzz]

ulj (r)

r

×
∑
ml ms

(−i)mlClml
Jml

(Qtb)〈lmlsms |jm〉

×Plml
(cos ϑ)χms

, (27)

where Qt and Qz are the transverse and longitudinal pro-
jections of Q along and perpendicular to the beam direction,
r = √

b2 + z2 and cos ϑ = z/
√

b2 + z2. The inclusion of the
spinors χms

imply |G(Q)|2 ≡ G†G = |G−|2 + |G+|2, where
G− is the spin-down and G+ the spin-up amplitude. In
the second equality we made use of the fact Ylm(ϑ, 0) =
ClmPlm(cos ϑ), where Plm are the Legendre polynomials, and

Clm = (−1)m
√

2l + 1

4π

√
(l − m)!

(l + m)!
.

Jm(x) are cylindrical Bessel functions.
As a function of the total momentum Q, another useful

expression for G(Q) is

G(Q) = 4πil
∑
ml ms

iml 〈lmlsms |jm〉Ylml
(Q̂)χms

×
∫

dr r jl(Qr)〈S(r)〉Qulj (r), (28)

where jl(x) is the spherical Bessel function.

C. Cross sections

Using the orthogonality relation of the spherical harmonics,
we can integrate Eq. (25) to get the total momentum distribu-
tion

dσ

Q2dQ
= 2

π

S(lj )

2j + 1

〈
dσpN

d�

〉
Q

×
∣∣∣∣ ∫ ∞

0
dr r〈S(r)〉Qz

jl(Qr)ulj (r)

∣∣∣∣2

. (29)

Using the relation∫ +∞

0
xJm(αx)Jm(βx)dx = 1

α
δ(α − β), (30)

we can integrate |G(Q)|2 over Qt using Eq. (27) and we obtain
the longitudinal momentum distribution,

dσ

dQz

= S(lj )

2j + 1

∑
m

〈
dσpN

d�

〉
Qz

|Clm|2

×
∫ ∞

0
db b

∣∣〈S(b)〉Qz

∣∣2

×
∣∣∣∣ ∫ ∞

−∞
dz exp[−iQzz]

ulj (r)

r
Plm(b, z)

∣∣∣∣2

. (31)

Using the relation

1

2π

∫
exp[i(α − β)x]dx = δ(α − β), (32)

we can integrate |G(Q)|2 over Qz using Eq. (27) and we obtain
the transverse momentum distribution,

dσ

QtdQt

= S(lj )

2j + 1

∑
m

〈
dσpN

d�

〉
Qt

|Clm|2
∫ ∞

−∞
dz

×
∣∣∣∣ ∫ ∞

0
db〈S(b)〉Qt

ulj (r)

r
Jm(Qtb)Plm(b, z)

∣∣∣∣2

. (33)

The total cross section is obtained either from integrations
of Eq. (31) or of Eq. (33), using the closure relations (30)
or (32). One obtains

σ = S(lj )
2π

2j + 1

∑
m

〈
dσpN

d�

〉
o.s.

|Clm|2

×
∫ ∞

0
db b|〈S(b)〉o.s.|2

∫ ∞

−∞
dz

∣∣∣∣ulj (r)

r
Plm(b, z)

∣∣∣∣2

.

(34)

The subscript “o.s.” in the above equation means that an
average over the final momenta is made, which satisfies the
on-shell conservation of energy for a nonrelativistic nuclear
recoil energy, as described in Eq. (7). In practice, the average
is done by a Monte Carlo sampling of the differential cross
sections for several final momenta k′

p and kN with the
constraint set by conservation of energy and momentum,

〈
dσpN

d�

〉
o.s.

=
∫

k′
p,kN ∈(o.s.) d

3k′
pd3kN

dσpN

d�∫
k′

p,kN ∈(o.s.) d
3k′

pd3kN

. (35)

For the momentum distributions obtained with Eqs. (29),
(31), and (33) the average is done with the constraint set by
the total momentum Q, while for the total cross section, the
constraint Q = 0 is used for simplicity.
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Equation (34) allows us to define a nucleon knockout
probability at a given impact parameter b by means of

P (b) = S(lj )

2j + 1

∑
m

〈
dσpN

d�

〉
o.s.

|Clm|2|〈S(b)〉o.s.|2

×
∫ ∞

−∞
dz

∣∣∣∣ulj (r)

r
Plm(b, z)

∣∣∣∣2

. (36)

This equation is useful to calculate the parts of the transverse
coordinate b of the single-particle wave function which is
probed by the nucleon knockout mechanism.

The knockout of a nucleon will often lead to a state of short
lifetime, which might decay to other channels than (p, pN ).
If, for example, an 0s1/2 proton from a nucleus like carbon
has been knocked out, the Pauli principle no longer excludes
those nuclear state rearrangements in which a p-shell proton
falls into the hole of the s shell ejecting another particle from
the nucleus. This decay energy can also be shared among all
nucleons forming a compound nuclear state which later decays
by particle evaporation. For simplicity we will not consider
these situations in this work, leaving it for future analysis.

IV. RESULTS

Before we discuss (p,2p) and (p, pn) reactions with
unstable nuclei, we will establish how well the formalism
described above reproduces quasifree knockout reactions on
stable targets. The ingredients for the calculations are the
equations developed above plus (a) total nucleon-nucleon cross
sections, using the fit of Ref. [62], (b) elastic differential
cross sections, using the Nijmegen global fit of the NN
database [74], (c) nuclear densities calculated with the Hartree-
Fock-Bogoliubov method, (d) single-particle wave functions
calculated with a Woods-Saxon + spin orbit potential with
parameters chosen to reproduce the separation energies, and
(e) spectroscopic factors. According to Eq. (34), total cross sec-
tions in (p, pN ) reactions are directly related to spectroscopic
factors. On the other hand, momentum distributions should
depend on the angular momentum of the single-particle state
probed in the reaction, according to Eqs. (29), (31), and (33).
Unless stated otherwise, we use spectroscopic factors equal to
the unity for the sake of concentrating on the dependence on
other physical inputs in the calculations.

A. Stable nuclei

1. Cross sections

In Fig. 2 we show the cross sections for 12C(p,2p)11B
fragmentation on hydrogen targets compared to experimental
data. We consider p (s) states in 12C with proton separation
energies of 15.9 (30.8) MeV and neutron separation energies
of 18.7 (35.1) MeV, respectively. The dashed curve is a
calculation using Eq. (34) and 〈dσpp/d�〉o.s. given by the
angular average of the elastic pp cross section satisfying the
energy constraint of Eq. (7). For comparison purposes we also
show by a dashed-dotted curve the cross sections calculated
assuming 〈dσpp/d�〉o.s. = σ tot

pp/4π where σ tot
pp is the total p-p

FIG. 2. (Color online) Cross sections of 12C(p, 2p)11B fragmen-
tation on hydrogen targets. The data are from Refs. [76,77]. The
dashed-dotted curve shows the cross section calculated according to
Eq. (34), with 〈dσpp/d�〉o.s. = σ tot

pp/4π where σ tot
pp is total p-p free

cross section. The full curve shows the same calculation multiplied
by a factor 0.77. The dashed curve uses 〈dσpp/d�〉o.s. given by the
angular average of the elastic pp cross section satisfying the energy
constraint of Eq. (7).

free cross section. In both cases the calculated cross sections
fail to reproduce the experimental data. By using the total
p-p cross section one also includes pion production which
is likely to leave behind an excited fragment. One naturally
expects that it will overestimate the value of the 12C(p,2p)11B
as compared to the experimental data. The full curve is the
same as the dashed-dotted curve, but multiplied by a factor
0.77. It shows a better agreement with the data. A rescaling
by any factor would not bring the dashed curve to a good
agreement with the experimental data.

Our calculations are done assuming the knockout from p
states only. Since the s-hole states are produced with high
excitation energies, other particles are expected to be emitted
from the decay, leading to a small contribution to the (p, pN )
channel [10].

In Fig. 2 one observes a decrease of the calculated cross
section as the bombarding energy decreases below Elab �
700 MeV/nucleon. This is attributed to the fact that a sizable
fraction of the scattered and knocked-out protons have an
energy below 200 MeV. At these energies and below, the proton
mean-free path is considerably reduced because the nucleon-
nucleon cross sections rapidly increase as their relative
energy decreases. A model similar to ours, containing many
simplifying assumptions, was published in Ref. [89]. They
have also used as input the total 〈dσpp/d�〉o.s. = σ tot

pp/4π ,
with σ tot

pp being the p-p total cross section. Their results have a
better agreement with other experimental data [89] than ours.
The reason for their successful results is puzzling as their
model contains many more simplifying assumptions than ours.

The calculation using elastic p-p differential cross sections,
with an average over the possible scattering angles, is shown
by a dashed line in Fig. 2. It is very common in the literature
to find calculations using 〈dσpp/d�〉o.s. = (dσpp/d�)elast

θc.m.=90◦ .
In our calculations we use the constraints set by the energy-
momentum conservation laws, which allows for scattering
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FIG. 3. (Color online) Cross sections of 12C(p, pn)11C fragmen-
tation on hydrogen targets. The data are from Refs. [76–88]. The
dashed-dotted curve shows the cross section calculated according to
Eq. (34), with 〈dσpn/d�〉o.s. = σ tot

pn/4π where σ tot
pn is total p-n free

cross section. The full curve shows the same calculation multiplied
by a factor 0.77. The dashed curve uses 〈dσpn/d�〉o.s. given by the
angular average of the elastic p-n cross section satisfying the energy
constraint of Eq. (7).

angles close to but not restricted to this value. The (p, 2p)
cross sections calculated with elastic cross sections lie con-
sistently below the experimental data for Elab � 500. And
they deviate more from the experimental data with increasing
bombarding energy. In fact, the elastic p-p cross section
becomes increasingly smaller than σ tot

pp at energies beyond
500 MeV/nucleon [90]. At these energies, the p-p angular
distribution is also more and more anisotropic, showing a dip
at c.m. scattering angles around 90◦. Hence, the averaged
p-p elastic cross sections include larger scattering angles,
with outgoing protons being more strongly absorbed and with
smaller scattering cross sections.

Similar features are seen our calculations presented in Fig. 3
for 12C(p, pn)11C as a function of the bombarding energy.
Here the deviations obtained with the elastic p-n cross sections
are more accentuated from those with isotropic total nucleon-
nucleon cross sections than for the 12C(p, 2p)11B reaction
(Fig. 2). One obvious reason is that the p-n elastic angular
distributions is more asymmetric than in the p-p case. At
the lower energies, additional cross section from excitation
of giant resonances (GRs) might contribute more, deserving
further investigation.

In Fig. 4 we show the free p-p and p-n total cross
sections (solid curves) as compared to the constrained angle
averaged elastic p-p and p-n cross sections (dashed curves)
according to Eq. (35) and for 12C(p, pN ), with N = p or
n. Not all scattering angles are possible when the energy-
momentum conditions in Eq. (7) are met. It is clear that
the constrained angle averaged elastic cross sections are in
most part responsible for the differences shown in Figs. 2
and 3 between the knockout cross sections obtained with
total and with elastic nucleon-nucleon cross sections. The
other part responsible for the differences is due to absorption
effects generated by multiple binary collisions at different
scattering angles. One observes in the figure that the medium

FIG. 4. (Color online) Free p-p and p-n total cross sections (solid
curves) as compared to the constrained angle averaged elastic p-p
and p-n cross sections (dashed curves) according to Eq. (35) and for
12C(p, pN ), with N = p or n.

averaged elastic cross sections (dashed curves) are smaller
than the respective total free NN cross sections, as expected.
However this difference decreases with decreasing energy and
at energies below 300 MeV the elastic, medium averaged, cross
sections become larger than the free total NN cross sections.
This arises because absorption due to multiple scattering in
the medium favors scattering angles away from 90◦ where the
differential cross section has a minimum. Hence, the averaged
total elastic cross sections are larger than they would be without
medium corrections because the largest values of the elastic
differential cross section weight more on the average.

One of the main issues related to the (p, pN ) cross
sections at high energies (∼1 GeV) is to separate the different
contributions arising from collective excitations leading to
energy loss and to evaporation, and binary scattering with and
without pion production. As shown from direct experimental
analysis (see, e.g., Ref. [91]), the (p, pN ) cross section gets
contributions from (a) nucleon-nucleon quasielastic scatter-
ing, (b) nucleon-nucleon inelastic scattering, and (c) a low
excitation energy. The cross sections, for all three cases are
comparable. The shapes of the momentum distributions in
cases can be reproduced with a nucleon-nucleon cascade
model including pion production, but the theoretical predic-
tions for the quasielastic component is too large by a factor of
3 [91]. The low momentum transfer peak is consistent with two
mechanisms: (1) an excitation and decay via proton emission
of the carbon projectile and (2) a projectile proton scattering
diffractively off the C target. Finally, the Fermi momentum
determined from the transverse momentum distribution is
160 ± 11 MeV/c compared to 190 ± 11 MeV/c from the
longitudinal momentum distribution.

We thus conclude that a direct comparison of our calcu-
lations with experimental data as shown in Figs. 2 and 3
is hampered by the fact that the data are inclusive. A
kinematically complete measurement of quasielastic scattering
including the selection of the quasifree kinematical condition
would allow a direct comparison with the calculated cross
section using the elastic nucleon-nucleon cross section as
an input. However, such data have been measured so far
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only with very restricted angular acceptances. The analysis of
Webb et al. [91] shows that only around 50% of the inclusive
cross section at 1 GeV/nucleon corresponds to quasielastic
scattering. The cross section measured by those authors is
8.8(2.5) mb compared to our prediction of about 20 mb using
elastic dσpp/d� at 1 GeV. The reduction by 0.44(13) is to
be compared to the usual reduction factor 0.6 from (e, e′p)
experiments. The experimental cross section in Ref. [91] has
been acceptance corrected using the cascade model, meaning
that it is model dependent. The fully exclusive experiments in
inverse kinematics as planned at the radioactive-beam facilities
[8–11] will provide a full solid-angle coverage, and will thus
be directly comparable to our predictions.

The features described in Figs. 2 and 3 have also been
observed for several other (p, 2p) and (p, pn) in our studies.
In the literature one finds experimental (p, pN ) cross sections
well described by means of phenomenological parameter
fitting models, such as those presented in Refs. [79,92].
The cross sections are also well described with microscopic
theoretical models such as that reported in Ref. [89] where total
nucleon cross sections for Eq. (35) were used and an analytical
formulation for the (p, pN ) reaction was given, with further
approximations. We are not certain what physics input in such
models validate their use and allow for a better agreement with
the data.

Other common approximations found in the literature are
(a) replacing 〈dσpN/d�〉o.s. by the total free nucleon-nucleon
cross section at 90◦ and keeping the same value for all
bombarding energies (see, e.g., Refs. [1,35,93]), and (b) us-
ing phenomenological effective nucleon-nucleon interactions
fitted to other nucleus-nucleus collision processes (such as
charge-exchange reactions), instead of nucleon-nucleon cross
sections (see, e.g., Ref. [94]). The use of Glauber theory was
also recognized as an important theoretical tool to treat mul-
tiple scattering as well as to formulate a relativistic covariant
model (see, e.g., Refs. [25–28]). On the other hand, the use
of Mandelstam variables has proven to have the advantage
of relating theoretical values to detection efficiencies in high-
energy collisions [95] in a more straightforward way. This
approach has been used in Ref. [96] to study quasifree α
knockout from 6,8He beams with a relative success.

It is also evident from Figs. 2 and 3 that the experimental
data at energies of the order of 200–500 MeV are rather well
described by using either total or elastic nucleon-nucleon
cross sections. In fact, the total elastic and total inelastic
nucleon-nucleon cross sections in free space have nearly the
same values at this energy range. The differential elastic
cross sections tend to be more asymmetric at larger energies.
We therefore conclude that this energy range should be best
suitable for studies of (p, pN ) reactions.

In Fig. 5 we plot the proton and neutron knockout
probabilities from p states in 12C using Eq. (36). The solid
curves are for (p, pn) and dashed curves for (p, 2p). We also
show the results obtained with 〈S(b)〉o.s. = 1 in Eq. (36). This
would correspond to a direct NN knockout, without multiple
binary collisions (no rescattering). In this case the knockout
probabilities are very large, almost violating unitarity. Ab-
sorption due to knockout reduces the one-nucleon knockout
probability considerably, as can be seen by the lower curves.

FIG. 5. (Color online) Proton and neutron knockout probabilities
from p states in 12C at 500 MeV/nucleon, according to Eq. (36).
The solid curves are for (p, pn) and dashed curves for (p, 2p). We
also show the results obtained with 〈S(b)〉o.s. = 1 in Eq. (36) (no
rescattering).

There is a larger reduction at smaller impact parameters than
at the surface, as expected from basic principles. From central
collisions (b = 0) there is a larger reduction due to absorption
from the one-nucleon knockout channel. For collisions at low
impact parameters we find an average reduction by a factor 6.8
for (p, 2p) reactions and by a factor 8.7 for (p, pn) reactions.

Multiple scattering effects have been studied by several
authors, using the Feshbach-Koonin-Kawai formalism (see,
e.g., Refs. [97–106]), or the multiple scattering Glauber
formalism (see, e.g., Refs. [25–28]), or even with a simple
one parameter rescaling factor model (see, e.g., Refs. [1,89]).
It is clear however that the effects of multiple scattering are
very large and need to be taken into account carefully if the
total cross section is supposed to be useful for the purposes of
extracting spectroscopic factors.

A simple approximation for dealing with the effects of
multiple scattering is to assume that the central probability
scales as

P � P0 exp

[
−3R

λ

]
, (37)

where P0 is the probability without absorption, R is the nuclear
radius, and λ is the nucleon mean free path. The factor 3 in
the numerator is due to the three particles; one in the incoming
channel and two in the outgoing channel. We use R = 2.6 fm,
corresponding to the mean square radius of 12C. This yields
a mean free path for protons in 12C of about λ � 2.9 fm
at 800 MeV/nucleon. Despite the approximations used for
this estimate, this result is remarkably close to the mean-free
path of high-energy protons in 12C, λ � 2.4 fm, deduced in
Ref. [107].

2. Momentum distributions

In nucleon knockout in heavy-ion reactions, momentum
distributions are known to be a useful probe of the angular
momentum of the knocked-out nucleon. Due to the centrifugal
barrier, a state with large l is confined to a smaller region,
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FIG. 6. (Color online) Longitudinal (upper panel), transverse
(middle panel), and total momentum distributions (lower panel) for
the missing momentum in 12C(p, 2p)11B fragmentation on hydrogen
targets. The full curves are for p states, the dashed curves are for s

states. The dotted curves s ′ correspond to the calculations where the
energy of the s states are taken as the p-state energy. The curves are
rescaled to be shown in the same plot.

yielding a broader momentum distribution [40]. The separation
energy is also an important factor to determine the size of
the bound-state single-particle function and has been a useful
tool to uncover the existence of unstable halo nuclei [36]. In
our calculations, the proton p-state energy in 12C is set to the
proton separation energy, i.e., εp = −15.9 MeV and the s-state
energy to εs = −30.8 MeV.

In Fig. 6 we show the longitudinal (upper panel), transverse
(middle panel), and total momentum distributions (lower
panel) for the missing momentum, Eq. (7), in 12C(p, 2p)11B
reactions on hydrogen targets at 500 MeV/nucleon. The
full curves are for p states, the dashed curves are for s
states. The dotted curves s ′ correspond to calculations for
which the energy of the s states are taken as the same energy
as the p-state energy. We have normalized the curves to a peak
value as we are only interested in the variation of the widths
of the distributions with the energy and angular momentum of
the involved single-particle orbitals.

Two effects are competing in the calculations of the p-state
and s-state proton removal shown by the solid and dashed
curves in Fig. 6. On the one hand, the l dependence widens
the distribution for the p states compared to those for the
s states. On the other hand, the separation energy of the s
state being larger than that for the p state compensates by
widening the s-state contribution. The transverse and total
momentum distributions (middle and lower panels) are still
able to discern between the two states. But for the longitudinal
momentum distributions the two curves are almost identical
in shape. When the energy of the s state is artificially set

equal to the energy of the p state, the shape of the s-
and p-momentum distributions differ substantially. It is clear
that the momentum distributions displayed either in terms of
transverse, or total missing momentum, are a sensitive probe
of the angular momentum state of the orbital from which
the proton is removed. A similar conclusion was obtained in
(e, e′p) momentum distribution analyses [108].

B. Neutron rich nuclei

The prominent differences between stable and neutron-rich
unstable nuclei are: (a) extended neutron distribution in the
form of a halo, or skin, and (b) smaller binding energies
than those for stable nuclei. Here we will explore both
cases and their imprints in the cross sections and momentum
distributions in (p, 2p) and (p, pn) reactions.

1. Cross sections

As an example for the dependence of the cross sections on
the separation energy, we consider (p, pn) reactions with 23O,
with valence neutrons in the [0d5/2]6 [1s1/2] configuration. The
separation energies are Sn(1s1/2) = 2.73 MeV and Sn(0d5/2) =
6.0 MeV. We artificially vary the separation energy of theses
states to explore the separation energy dependence of the
(p, pn) cross sections at 500 MeV/nucleon.

In Fig. 7 we plot the cross sections for neutron removal
in (p, pn) reactions on 23O from [0d5/2]6 and [1s1/2] orbitals
as a function of the separation energy. The cross sections for
neutron removal from the [0d5/2]6 orbital is divided by the
number of the neutrons in the orbital (6). As expected, the cross
sections are strongly energy dependent close to the threshold
and steadily decrease with increasing separation energy. Close
to threshold (i.e., close to Sn = 0) a large chunk of the
wave function lies in a region where absorption, or multiple
scattering, is smaller, thus increasing the removal probability
at larger impact parameters, consequently increasing the

FIG. 7. (Color online) Cross sections for neutron removal in
(p, pn) reactions on 23O from [0d5/2]6 and [1s1/2] orbitals as a
function of the separation energy. The cross sections for neutron
removal from the [0d5/2]6 orbital is divided by the number of
the neutrons in the orbital (6). The separation energies are varied
artificially. The dashed and dotted curves are to guide the eyes.
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knockout cross section. As the separation energy increases
it becomes harder to knockout a neutron without rescattering
effects.

We play a similar game as above in order to test the
dependence of the cross sections on the matter distribution.
To avoid inclusion of the dependence of the cross section
on the separation energy, we assume a constant separation
energy for the removed neutrons and protons. We also adopt
the naive shell-model with eight protons in the 0f1/2 shell.
The neutrons fill progressively the 0f5/2, 1p1/2, 0g9/2, and
0g7/2 orbitals. The neutron and proton densities for the Ni
isotopes are calculated within the Hartree-Fock-Bogoliubov
model using the SLy4 interaction [109] and a mixed pairing
interaction (see Ref. [110]). Only even-even isotopes were
considered. The neutron skin thickness is characterized by the
difference of neutron and proton rms radii,

δr = 〈
r2
n

〉1/2 − 〈
r2
p

〉1/2
. (38)

In Fig. 8 we show our results for the neutron skin of even-even
Ni isotopes in the upper panel. The lower panel displays the
(p, pn) and (p, 2p) cross sections obtained assuming a fixed
binding energy for the knocked out nucleon.

It is clear from Fig. 8 that the increasing neutron skin has
a small effect on the (p, 2p) cross sections, if the separation
energy of the removed proton is kept constant. The main effect
is to reduce the cross section due to the larger rescattering
probability as the nuclear mass increases. The neutron-proton
and proton-proton total cross sections are about the same at
this energy. The large nuclear charge and the Coulomb barrier

FIG. 8. (Color online) Neutron skin of even-even Ni isotopes
obtained with a HFB calculation (upper panel). The lower panel
displays the (p, pn) and (p, 2p) cross sections on Ni isotopes at
500 MeV/nucleon assuming a fixed binding energy for the knocked
out nucleon (see text for explanation). The dashed curves are to guide
the eyes.

for the proton leads to a concentration of the proton wave
function at the nuclear center where the absorption effects are
stronger, yielding to a larger reduction of the (p, 2p) cross
section compared to (p, pn). However, the increasing neutron
numbers in each orbital will increase the neutron removal
probabilities as the orbital is filling up. This is clearly seen in
the figure. In principle, the cross sections for neutron removal
would increase even faster because an increasing neutron
skin often means a smaller separation energy for a valence
neutron. As we discussed in connection with Fig. 7, decreasing
separation energies lead to increasing values of removal cross
sections. Therefore, the dependence on the neutron skin should
be manifest throughout the increasing number of neutrons in
the orbitals and also with the separation energy of the removed
neutron. For proton removal the increasing neutron skin has a
lesser important role on the separation energy.

It is worthwhile to compare which parts of the wave
function are accessible in knockout reactions with heavy ions
with those obtained in (p, pN ) reactions. The theory for
knockout reactions with heavy ions, routinely used to extract
nuclear spectroscopic information, relies on the eikonal theory
developed in Ref. [37]. The theory is based on probability
arguments using the eikonal S matrix to obtain the parts of the
nucleon wave function which are “measured” by the reaction
mechanism. It has later been proven to be a valuable tool
for reactions involving unstable nuclear beams [38,40,48].
Following the same formalism as in Refs. [37,38,40] one
obtains for the probability to remove a nucleon in orbital (j l)
located at distance b (perpendicular to the collision axis) from
the center of the projectile as

Pjl(b) = 1

2l + 1
|Sc(b)|2

∑
m

∫
d3r|ψjlm(r)|2

× [1 − |Sn(
√

r2 sin2 θ + b2 − 2rb sin θ cos φ)|2].

(39)

Here SN (Sc) is the eikonal matrix amplitude for the scattering
of the nucleon N (core c) on the target, and r ≡ (r, θ, φ).

In Fig. 9, upper panel, we show the dashed curve shows
the probability for removal of a neutron in the reaction
12C(68Ni,67Ni) at 500 MeV/nucleon as a function of the
distance to the c.m. of 68Ni. The dotted curve represents
the removal probability in a 68Ni(p, n) reaction at the same
energy. For comparison the square of the radial wave function
u(r) is also shown (solid curve). We assume a neutron in
the 0f7/2 orbital in 68Ni, bound by 15.68 MeV. The figures
in the middle panel are for the reactions 12C(11Be,10Be) and
11Be(p, n) at 500 MeV/nucleon. We assume a neutron in the
1s1/2 orbital in 11Be, bound by 0.54 MeV. The figures in the
lower panel are for the reactions 12C(8B,7Be) and 8Be(p, 2p) at
500 MeV/nucleon. We assume a neutron in the 0p3/2 orbital
in 8Be, bound by 0.14 MeV. One observes that the removal
cross sections for both knockout and (p, pn) reactions probe
the surface part of the wave function. This is due to the fact that
in both cases, the absorption is very strong for small impact
parameters. For proton or neutron removal from even deeper
bound states, with a concentration of the wave function closer
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FIG. 9. (Color online) Upper panel: The dashed curve shows the
probability for removal of a neutron in the reaction 12C(68Ni,67Ni) at
500 MeV/nucleon as a function of the distance to the c.m. of 68Ni.
The dotted curve represents the removal probability in a 68Ni(p, pn)
reaction at the same energy. For comparison the square of the radial
wave function u(r) is also shown (solid curve). Middle panel: Same as
the upper panel, but for the reactions 12C(11Be,10Be) and 11Be(p, pn)
at 500 MeV/nucleon. Lower panel: Same as upper panel, but for the
reactions 12C(8B,7Be) and 8B(p, 2p) at 500 MeV/nucleon.

to the origin, both reaction mechanisms will probe an even
smaller part of the wave function tail.

In the middle panel of Fig. 9 one sees that the part of the
wave function probed in the 12C(11Be,10Be) is again limited
to the surface of the nucleus, beyond the orbital maximum
density. On the other hand, the (p, pn) reaction has a much
larger probability of accessing information on the inner part of
the wave function, as seen by the dashed curve. These results
are in agreement with the conclusions drawn in Ref. [28] for
stable nuclei where it has been shown that for light nuclei the
average density probed in (e, e′p) is comparable to the one
probed in (p, 2p). There is a strong A dependence, though,
and for medium-heavy and heavy nuclei one is rather probing
the surface region in (p, pN ) reactions. It is thus clear that
knockout reactions with heavy ions and (p, pN ) reactions
yield complementary nuclear spectroscopic information. For
deep bound states the first reaction is only accessible to the tail
of the nuclear wave function, whereas the (p, pN ) reaction
process probes the largest part of the wave function for loosely
bound nuclei.

2. Momentum distributions

The shape of the momentum distributions for (p, 2p) and
(p, pn) reactions always have similar characteristics as those
shown in Fig. 6, independent of the nucleus. As we have
discussed before, for stable nuclei the shape will depend
mainly on the angular momentum and on the separation energy
of the knocked out nucleon. The dependence on the angular
momentum is obvious, following the same trend for either
stable or unstable projectiles. But unstable projectiles often

FIG. 10. (Color online) Full width at half-maximum (FWHM)
of the transverse momentum distributions in (p, 2p) and (p, pn)
reactions of 20O at 500 MeV/nucleon as a function of the proton
and neutron separation energies. The upper curve is for (p, pn) and
lower curve for (p, 2p) reactions. The separation energies are varied
artificially (see text for explanation). The dashed and dotted curves
are to guide the eyes.

exhibit very low nucleon separation energies. As with nucleon
removal reactions with heavy ions, one also expects that the
width of the momentum distribution are strongly dependent on
the separation energy, in particular close to the drip line. We
will test this with 20O which has a proton (neutron) separation
energy of 19.43 (7.61) MeV. We will artificially vary these
values to learn how the widths of the transverse momentum
distributions will vary with the separation energy. The knocked
out protons and neutrons are assumed to occupy the [0p1/2]2

and [0d5/2]4 levels, respectively.
In Fig. 10 we show the full width at half-maximum

(FWHM) of the transverse momentum distributions in (p, 2p)
and (p, pn) reactions of 20O at 500 MeV/nucleon as a function
of the proton and neutron separation energies. The upper
curve is for (p, pn) and lower curve for (p, 2p) reactions.
As expected, the widths for d states are larger than those for p
states.

A very different trend exists for (p, pN ) reactions in com-
parison to nucleon knockout reactions induced by heavy ions.
For the latter case, the width of the momentum distributions
decreases strongly with decreasing separation energies. That
was in fact, one of the hallmarks for the identification of the
first halo nuclei [36]. In contrast, one observes in Fig. 10 a
“saturation” of the width for decreasing separation energy.
The reason for this behavior is the fact that knockout reactions
induced by heavy ions are a very peripheral process, being
almost entirely sensitive to the tail of the nucleon wave
functions [38]. In contrast, (p, pN ) reactions are in great part
influenced by the part of the nucleon wave function inside the
nucleus. The width of the momentum distributions for (p, pN )
reactions reduce with decreasing separation energies because
an extended part of the nucleon wave function is accessed as
the separation energy decreases till a “saturation” of the width
is reached at low separation energies. As concluded from our
calculations (see, e.g., Fig. 7), the total cross section is a better
measure of the nucleon separation energy in loosely bound
nuclei.
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FIG. 11. (Color online) Longitudinal momentum distributions for
11Be(p, n) and 68Ni(p, n) reactions at 500 MeV/nucleon. For 11Be
we assume neutron removal from the 1s1/2 states with 0.502 MeV
separation energy, while for 68Ni we assume the removal from 0f3/2

orbital with separation energy of 15.68 MeV. PWIA results are shown
as dashed lines, whereas the solid lines are for the full DWIA.

Finally, in Figs. 11 and 12 we show the longitudinal
(Fig. 11) and transverse (Fig. 12) momentum distributions
for 11Be(p, n) and 68Ni(p, n) reactions at 500 MeV/nucleon.
For 11Be we assume neutron removal from the 1s1/2 state
with 0.502 MeV separation energy, while for 68Ni we assume
the removal from 0f7/2 orbital with separation energy of
15.68 MeV. In the plane wave impulse approximation (PWIA),
the S matrices for the incoming and outgoing particles are all

FIG. 12. (Color online) Same as in Fig. 11, but for transverse
momentum distributions.

set to the unity (no distortion). From Eq. (25) we get

(
dσ

d3Q

)
PWIA

= 1

(2π )3

S(lj )

2j + 1

∑
m

〈
dσpN

d�

〉
Q

×
∣∣∣∣ ∫ d3r e−iQrψjlm(r)

∣∣∣∣2

. (40)

In Figs. 11 and 12 the PWIA results are shown as dashed
lines, whereas the solid lines are for the full DWIA, Eq. (25).
As we have discussed in connection with Fig. 5, the PWIA
yields results that are much larger than in the DWIA, because
the absorption is missing in the PWIA method. Hence, we
renormalize the results to be shown in the same plot. It is clear
from Fig. 11 that the shape of the longitudinal momentum
distributions is insensitive to the details of the wave function
being probed. The two cases compared (11Be and 68Ni) are very
representative because they differ strongly on the separation
energies, angular momenta, and on principal quantum numbers
(number of nodes in the wave functions). In both cases, the
insensitivity of the width is manifest. The physical reason
is the same as for longitudinal momentum distributions in
knockout reactions, first shown in Ref. [38]. This is easily
understood from Eq. (31) because the dependence on Qz is
basically contained in the last integral: the S matrices and in
medium quasifree cross sections are weakly dependent on Qz.
Their net effect is to rescale the magnitude of the total cross
section.

For the transverse momentum distributions, we see a clear
separation of shapes in Fig. 12, as they are appreciably
influenced by the S matrices which enter directly into the
b integral in Eq. (33). Some of the features of the wave
distortion in the entrance and outgoing channels carry a
stamp on the transverse momentum distributions, as seen
in the upper panel of the figure where a shoulder in the
tail of the distributions is clearly seen. This is the same
sort of reaction distortion mechanism occurring in heavy ion
knockout reactions which was emphasized in Ref. [45]. The
contribution of the different m magnetic substates also impact
on the shape of the distributions. The DWIA and PWIA
results look different, mostly visible as a shift of the curve for
11Be(p, pn), or strongly distorted, as in the case of 68Ni(p, pn)
seen in the lower panel of Fig. 12.

V. CONCLUSIONS

There are other observables which have been used for
nuclear spectroscopy with (p, pN ) reactions. In the past,
angular distribution of the nucleons have been scrutinized
by comparison with theory. The comparison in this case is
more sensitive to several details of the theory model. It has
been indeed a difficult task to learn from experiments which
physical input was determinant for a good reproduction of the
angular data [1]. We believe that a much simpler method can be
used based on momentum distributions, which also have been
shown to be very useful in the case of heavy ion reactions.
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One also probes the spectroscopy of nuclei more closely if
one measure both (p, 2p) and (p, pn) reactions and studies
cross section ratios such as

R = (dσ/dQ)(p,pn)
(
dσ elast

pp /d�
)
θ=90◦

(dσ/dQ)(p,pn)
(
dσ elast

pn /d�
)
θ=90◦

. (41)

In fact, similar methods have been introduced in the past to
separate the effects of final state interactions and off-shell
effects in (p, 2p) and (p, pn) cross sections at Ep < 100 MeV
[111–114].

In this paper we have focused on the opportunities that
(p, 2p) and (p, pn) reactions can offer to the studies of
nuclei far from the stability line in experiments using inverse
kinematics. Quasifree (p, 2p) and (p, pn) reactions have been
used as a spectroscopic tool for more than 60 years. The
reaction mechanism is known to be well described in the
distorted wave impulse approximation formalism. We have
developed a formalism making use of the eikonal theory
allowing a quantitative description of the reaction mechanism
including absorption from the elastic channel due to multiple-
scattering effects. Our approach provides scattering-angle
averaged cross sections and recoil momentum distributions,
well adapted to the needs of large-acceptance experiments in
inverse kinematics with radioactive beams.

Here we concentrated on the use of momentum distributions
as a spectroscopic tool, following the success of using nucleon
knockout reactions for nuclear spectroscopy of radioactive

beams. In fact, we have shown that (p, pN ) reactions show
some similarities with heavy-ion knockout reactions. But some
striking differences are also found. Perhaps the most evident
one is that fact that (p, pN ) reactions are more sensitive to the
interior part of the nuclear wave function. This carries imprints
in the momentum distributions that are easily understood by
using an eikonal and DWIA reaction formalism. In view of
the development and better experimental detection techniques,
data are now of much higher quality than those obtained in
previous decades. Pioneering experiments with (p, pN ) with
radioactive nuclei in inverse kinematics are now becoming
available. In this article we have shown the main reaction
mechanism features which are expected, and what can be
learned from the properties of single particle states. More
exclusive measurements will require more detailed reaction
theory, which is now under development.
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