778 research outputs found

    From Collaborative Initiatives to Collaborative Culture

    Get PDF

    Academic Budget Prioritization in a Shared Governance University

    Get PDF
    Academic program review and budget prioritization in a shared governance environment with transparency and results was critical for Minnesota State University-Mankato, in preparation for forecasted budget reductions. Using an interactive format, this session will review the development of program evaluation metrics, highlight the process and timeline used, present key lessons learned, and provide attendees an opportunity to consider application on their home campus

    Effective Disaster Management by Efficient Usage of Resources

    Full text link
    Disaster Management can be merely defined as the organization and management of resources and responsibilities for dealing with all humanitarian aspects of crises, in specific preparedness, rejoinder and recapture in order to diminish the influence of disasters. But the affects of the disaster increases only when the information about the disaster is unknown and when the resources for the disaster management is not correctly used. Now there are several methods for forecast the disaster, But there are no any effective methods for handling the resources needed for both managing the disaster and also for rehabilitation purpose. Thus this paper proposes an application used for managing the disaster and handling the rehabilitation process. This application which deals with almost all the resources those are required for the management of disaster. This proposed application which is based on java programming language. This project also has a great scope of enhancement in future

    Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: A case study in sulfur-hyperdoped silicon

    Get PDF
    We present a methodology for estimating the efficiency potential for candidate impurity-band photovoltaic materials from empirical measurements. This methodology employs both Fourier transform infrared spectroscopy and low-temperature photoconductivity to calculate a “performance figure of merit” and to determine both the position and bandwidth of the impurity band. We evaluate a candidate impurity-band material, silicon hyperdoped with sulfur; we find that the figure of merit is more than one order of magnitude too low for photovoltaic devices that exceed the thermodynamic efficiency limit for single band gap materials.National Science Foundation (U.S.) (Energy, Power, and Adaptive Systems Grant Contract ECCS-1102050)National Science Foundation (U.S.) (United States. Dept. of Energy NSF CA EEC-1041895)Center for Clean Water and Clean Energy at MIT and KFUP

    Telomere Length as a Quantitative Trait: Genome-Wide Survey and Genetic Mapping of Telomere Length-Control Genes in Yeast

    Get PDF
    Telomere length-variation in deletion strains of Saccharomyces cerevisiae was used to identify genes and pathways that regulate telomere length. We found 72 genes that when deleted confer short telomeres, and 80 genes that confer long telomeres relative to those of wild-type yeast. Among identified genes, 88 have not been previously implicated in telomere length control. Genes that regulate telomere length span a variety of functions that can be broadly separated into telomerase-dependent and telomerase-independent pathways. We also found 39 genes that have an important role in telomere maintenance or cell proliferation in the absence of telomerase, including genes that participate in deoxyribonucleotide biosynthesis, sister chromatid cohesion, and vacuolar protein sorting. Given the large number of loci identified, we investigated telomere lengths in 13 wild yeast strains and found substantial natural variation in telomere length among the isolates. Furthermore, we crossed a wild isolate to a laboratory strain and analyzed telomere length in 122 progeny. Genome-wide linkage analysis among these segregants revealed two loci that account for 30%–35% of telomere length-variation between the strains. These findings support a general model of telomere length-variation in outbred populations that results from polymorphisms at a large number of loci. Furthermore, our results laid the foundation for studying genetic determinants of telomere length-variation and their roles in human disease

    A high resolution genome-wide scan for significant selective sweeps: an application to pooled sequence data in laying chickens

    Get PDF
    In most studies aimed at localizing footprints of past selection, outliers at tails of the empirical distribution of a given test statistic are assumed to reflect locus-specific selective forces. Significance cutoffs are subjectively determined, rather than being related to a clear set of hypotheses. Here, we define an empirical p-value for the summary statistic by means of a permutation method that uses the observed SNP structure in the real data. To illustrate the methodology, we applied our approach to a panel of 2.9 million autosomal SNPs identified from re-sequencing a pool of 15 individuals from a brown egg layer line. We scanned the genome for local reductions in heterozygosity, suggestive of selective sweeps. We also employed a modified sliding window approach that accounts for gaps in the sequence and increases scanning resolution by moving the overlapping windows by steps of one SNP only, and suggest to call this a "creeping window" strategy. The approach confirmed selective sweeps in the region of previously described candidate genes, i.e. TSHR, PRL, PRLHR, INSR, LEPR, IGF1, and NRAMP1 when used as positive controls. The genome scan revealed 82 distinct regions with strong evidence of selection (genome-wide p-value<0.001), including genes known to be associated with eggshell structure and immune system such as CALB1 and GAL cluster, respectively. A substantial proportion of signals was found in poor gene content regions including the most extreme signal on chromosome 1. The observation of multiple signals in a highly selected layer line of chicken is consistent with the hypothesis that egg production is a complex trait controlled by many genes

    Breed Relationships Facilitate Fine-Mapping Studies: A 7.8-kb Deletion Cosegregates With Collie Eye Anomaly Across Multiple Dog Breeds

    Get PDF
    The features of modern dog breeds that increase the ease of mapping common diseases, such as reduced heterogeneity and extensive linkage disequilibrium, may also increase the difficulty associated with fine mapping and identifying causative mutations. One way to address this problem is by combining data from multiple breeds segregating the same trait after initial linkage has been determined. The multibreed approach increases the number of potentially informative recombination events and reduces the size of the critical haplotype by taking advantage of shortened linkage disequilibrium distances found across breeds. In order to identify breeds that likely share a trait inherited from the same ancestral source, we have used cluster analysis to divide 132 breeds of dog into five primary breed groups. We then use the multibreed approach to fine-map Collie eye anomaly (cea), a complex disorder of ocular development that was initially mapped to a 3.9-cM region on canine chromosome 37. Combined genotypes from affected individuals from four breeds of a single breed group significantly narrowed the candidate gene region to a 103-kb interval spanning only four genes. Sequence analysis revealed that all affected dogs share a homozygous deletion of 7.8 kb in the NHEJ1 gene. This intronic deletion spans a highly conserved binding domain to which several developmentally important proteins bind. This work both establishes that the primary cea mutation arose as a single disease allele in a common ancestor of herding breeds as well as highlights the value of comparative population analysis for refining regions of linkage
    corecore