549 research outputs found

    Exploring the Potential of Urban Coastal Interfaces for Socio-Environmental Connections: The Cases of Marseille and Naples

    Get PDF
    Contemporary coastal cities intertwine variegated stakes, linked to the economic, productive and social functions of the seashore, and need a correct management aimed at balancing the different needs and at maintaining a high ecological status of the coasts themselves. A fracture emerges between the urban development of coastal areas and the social desire and expectations of the 'urban coastal society', a community intimately connected to the coast and sea elements. Port and productive evolution has often neglected the socio-recreational component inherent in coastal areas, related to its attractiveness for citizens, the presence of natural qualities and an undeniable visual and perceptual value that influence the use of these places, influencing the conformation of coastal public spaces. The integrity of the urban coasts appears fragmented by the juxtaposition of variegated elements which can however be considered as pieces of a potential green-blue infrastructure, with a view to recomposing the city-sea interface. The contribution aims to investigate the management and design criticalities that affect urban blue spaces, mainly in relation to the implications related to leisure and sociality, proposing a historical, spatial and socio-perceptive comparison between Naples and Marseille

    Thermal conductivity and dielectric properties of polypropylene-based hybrid compounds containing multiwalled carbon nanotubes

    Get PDF
    In this article, we explore the possibility to develop composites with improved thermal conductivity and electrically insulating properties. The strategy adopted is to combine a thermal and electrical conductive filler (multiwalled carbon nanotubes) with secondary dielectric (but thermally conductive) fillers. To this end, particles with different compositions, sizes, and shape were used as secondary fillers and the composites, prepared by melt compounding, are characterized in terms of thermal and dielectric properties. Results show that, in ternary formulations, an increase of thermal conductivity is always verified for all kind of secondary particles. Analogously, increments in electrical conductivity are observed for ternary compounds containing larger size secondary fillers, while a significant reduction is achieved with the addition of smaller ones. This behavior is explained in terms of mutual distribution of the fillers and is consistent with direct (scanning electron microscopy) and indirect (rheological) observations

    adhesion of functional layer on polymeric substrates for optoelectronic applications

    Get PDF
    The use of plastic film substrates for organic electronic devices promises to enable new applications, such as flexible displays. Plastic substrates have several distinct advantages, such as ruggedness, robustness, ultra lightness, conformability and impact resistance over glass substrates, which are primarily used in flat panel displays (FPDs) today. However, high transparency, proper surface roughness, low gas permeability and high transparent electrode conductivity of the plastic substrate are required for commercial applications. Polyesters, both amorphous and semicrystalline, are a promising class of commercial polymer for optoelectronic applications. Surface modification of polyester films was performed via chemical solution determining hydrolysis or oxidation. Hydrolysis was carried out by means of sodium hydroxide solution and oxidation by using standard clean 1 (SC-1) of RCA procedure [1]. For this work we have used commercial polymer films of 100µm in thickness: AryLite™ [2], supplied by Ferrania Imaging Technologies S.p.A. and characterised by very high glass transition temperature, Mylar™ (Polyethylene Terephthalate PET) and Teonex™ (Polyethylene Naphthalate PEN) both supplied by Dupont. More over, a bioriented and semicrystalline PET have been used. The aim of this study is modifying the polymer surface to improve the adhesion between organic-inorganic layer. It was found that the NaOH and SC-1 treatment cause a decrease of contact angles. In the present study we have deposited a thin films of amorphous hydrogenated silicon (a-Si:H) and its oxide (SiO2) on a new high temperature polymer substrate, AryLite™, by plasma enhanced chemical vapour deposition (PECVD) [3], with a radio frequency plasma system

    Melt-spun bioactive sutures containing nanohybrids for local delivery of anti-inflammatory drugs.

    Get PDF
    In this work, a novel concept is introduced in drug-eluting fibres to ensure a good control of drug delivery features and wide applicability to different bioactive compounds. Composite bioactive sutures based on fibre grade poly(ε-caprolactone) (PCL) and loaded with the anti-inflammatory drug Diclofenac (Dic) or a Dic nanohybrid where the drug is intercalated in a synthetic hydrotalcite (Mg/Al hydroxycarbonate) (HT-Dic) were developed. Fibres were prepared by melt-spinning at different PCL/HT-Dic/Dic ratios and analysed in terms of morphology, mechanical properties and drug release features. Results emphasized that tensile properties of fibres are clearly affected by Dic or HT-Dic addition, while the presence of knots has limited influence on the mechanical behaviour of the sutures. Release of Dic strongly depends on how Dic is loaded in the fibre (as free or nanohybrid) whereas the combination of free Dic and HT-Dic can allow a further tuning of release profile. In vivo experiments show a reduction of inflammatory responses associated with Dic-loaded fibers. Thus, a proof of principle is provided for a novel class of bioactive sutures integrating advanced controlled-release technologies

    Cross-reactivity between HLA-A2-restricted FLU-M1:58–66 and HIV p17 GAG:77–85 epitopes in HIV-infected and uninfected individuals

    Get PDF
    BACKGROUND: The matrix protein of the influenza A virus and the matrix and capsid proteins of the human immunodeficiency virus (HIV) share striking structural similarities which may have evolutionary and biological significance. These similarities led us to hypothesize the existence of cross-reactivity between HLA-A2-restricted FLU-M1:58–66 and HIV-1 p17 GAG:77–85 epitopes. METHODS: The hypothesis that these two epitopes are cross-reactive was tested by determining the presence and extent of FLU/GAG immune cross-reactivity in lymphocytes from HIV-seropositive and seronegative HLA-A2(+ )donors by cytotoxicity assays and tetramer analyses. Moreover, the molecular basis for FLU/GAG cross-reactivity in HIV-seropositive and seronegative donors was studied by comparing lymphocyte-derived cDNA sequences corresponding to the TCR-β variable regions, in order to determine whether stimulation of lymphocytes with either peptide results in the expansion of identical T-cell clonotypes. RESULTS: Here, we report evidence of cross-reactivity between FLU-M1:58–66 and HIV-1 p17 GAG:77–85 epitopes following in vitro stimulation of PBMC derived from either HIV-seropositive or seronegative HLA-A2(+ )donors as determined by cytotoxicity assays, tetramer analyses, and molecular clonotyping. CONCLUSION: These results suggest that immunity to the matrix protein of the influenza virus may drive a specific immune response to an HLA-A2-restricted HIV gag epitope in HIV-infected and uninfected donors vaccinated against influenza

    Polyacetylenes Bearing Chiral-Substituted Fluorene and Terfluorene Pendant Groups: Synthesis and Properties

    Get PDF
    The synthesis of the first polyacetylenes bearing chiral fluorene-based pendant groups is described. Poly{9,9-bis[(S)-3,7-dimethyloctyl]fluoren-2-ylacetylene} (PFA1), poly{9,9-bis[(S)-2-methylbutyl]- fluoren-2-ylacetylene} (PFA2), and poly{9,9,9′,9′,9′′,9′′-hexakis[(S)-2-methylbutyl]-7,2′;7′,2′′-terfluoren- 2-ylacetylene} (PFA3) have been obtained by Rh(I)-catalyzed polymerization of the corresponding terminal acetylene monomers 2-ethynyl-9,9-bis[(S)-3,7-dimethyloctyl]fluorene (2a), 2-ethynyl-9,9-bis[(S)-2-methylbutyl]fluorene (2b), and 2-ethynyl-9,9,9′,9′,9′′,9′′-hexakis[(S)-2-methylbutyl]-7,2′;7′,2′′-terfluorene (10). The effect of the alkyl chain length at the C-9 position of fluorene on the structural and conformational aspects of the polymers PFA1 and PFA2 as well as on their chiroptical properties was studied by XRD, DSC, TGA, GPC, UV-vis, and CD. A more planar conformation of the polyenic backbone of PFA1 with respect to PFA2 can be inferred by a red shift of the ð-ð* transition in the UV-vis spectra. Their photoluminescence properties are those typical of fluorene systems. CD measurements evidenced Cotton effects of opposite signs in correspondence of the backbone absorption region, ascribable to an excess of a screw sense of the helical conformations assumed by the two polymers. PFA3 revealed an amorphous structure and exhibited peculiar thermal stability features (as indicated by TGA and DSC). Its emission spectra interest the violet-blue region and do not show any substantial red shift passing from solution to solid state, thus pointing out an aggregation prevention of terfluorene groups by means of the polyacetylene backbone

    Addressing dropout from prolonged exposure : feasibility of involving peers during exposure trials

    Get PDF
    Posttraumatic stress disorder (PTSD) is a significant problem for combat veterans. Fortunately, effective treatments, such as Prolonged Exposure (PE), are available and widely disseminated in the Veterans Affairs (VA) health-care system. Nonetheless, despite well-documented effectiveness, attrition remains high at approximately 30% across evidence-based interventions. Early studies indicated that dropout was largely related to stigma and logistical barriers (e.g., travel time and cost). However, research demonstrates that eliminating these logistical and stigmabased barriers (e.g., through home-based telemedicine) has little effect on dropout. We surveyed 82 veterans who dropped out of PE treatment regarding reasons for leaving treatment. Approximately half indicated that in vivo homework assignments caused significant problems, and when asked to consider the possibility of peer support during in vivo exposure assignments, 52% indicated that they would consider returning to treatment with such assistance. In response to this feedback, we constructed an in vivo therapy peer support program wherein peers are directly involved with in vivo exposure exercises. The following brief report presents the rationale for, outline of, and initial feasibility data supporting this program to enhance both return to, and completion of, exposure therapy treatment for PTS
    • …
    corecore