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In this work, a novel concept is introduced in drug-eluting fibres to ensure a good control of drug delivery
features and wide applicability to different bioactive compounds. Composite bioactive sutures based on fibre
grade poly(e-caprolactone) (PCL) and loaded with the anti-inflammatory drug Diclofenac (Dic) or a Dic
nanohybrid where the drug is intercalated in a synthetic hydrotalcite (Mg/Al hydroxycarbonate) (HT-Dic)
were developed. Fibres were prepared by melt-spinning at different PCL/HT-Dic/Dic ratios and analysed in
terms of morphology, mechanical properties and drug release features. Results emphasized that tensile proper-
ties of fibres are clearly affected by Dic or HT-Dic addition, while the presence of knots has limited influence on
the mechanical behaviour of the sutures. Release of Dic strongly depends on how Dic is loaded in the fibre (as free
or nanohybrid) whereas the combination of free Dic and HT-Dic can allow a further tuning of release profile. In
vivo experiments show a reduction of inflammatory responses associated with Dic-loaded fibers. Thus, a proof of
principle is provided for a novel class of bioactive sutures integrating advanced controlled-release technologies.
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1. Introduction

Sutures are biomedical devices of natural or synthetic origin used to
held together tissues that have been separated due to surgery or trau-
matic injury. Despite the presence of different devices for wound
closure (staples, tapes and glues) available on the market, sutures are
the most widely diffused in the medical practice and have a market of
around 1.3 billion dollars a year [1]. Since a suture should fulfil a number
of requirements, unfortunately, no ideal product is available and the
surgeon generally operates a selection on the basis of availability and
familiarity [2,3]. Nevertheless, an appropriate suture should take into
account aspects such as mechanical properties, resorption rate, risk of
infection, and inflammatory reactions that may occur during wound
healing process. Over the years, new suture materials have been devel-
oped to better respond to particular surgical needs. Recently, the re-
search has switched toward a novel concept of medicated suture that
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includes a bioactive compound which can be released in a defined
time frame and help tissue repair.

Research in this area, although being very attractive, has led to very
few products successfully entering the market [4-6]. The first commer-
cial antimicrobial suture, a Polyglactin 910 suture loaded with triclosan,
a broad-spectrum antibacterial agent (Vicryl Plus®), was approved for
clinical uses by the US Food and Drug Administration (US FDA) since
2002 [7]. The basic concept in these sutures consists in coating a
preformed polymeric filament with a second biodegradable polymer
layer embedding triclosan with the aim to create a zone of inhibition
to the spread of bacteria and to exert a preventive action against the
possible infection of the surgical site [8]. Nowadays antimicrobial su-
tures are successfully used in a number of surgical procedures [7,
9-13] with a reduction of wound site infection and consequent cost sav-
ing [14]. For all these reasons this treatment strategy was found to be
very promising and sutures coated with other drugs such as antithrom-
botic, analgesics, antineoplastic and antiproliferative agents are under
investigation [15].

Recently Lee et al. [16] have proposed a new method to obtain med-
icated suture where a commercial suture is covered with a polymeric
sheet loaded with a pain relief drug. These sutures have been proven
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to have suitable mechanical properties and a drug release only for
6 days. Nevertheless, control of drug release rate is a critical factor to
design a bioactive suture in view of an optimized biological effect. For
this reason, more suitable strategies are needed to attain both efficient
control over drug release rate and adequate mechanical properties. As
an alternative to coated fibres, electrospun aligned fibres have been
developed where different active agents are dispersed in a polymer to
give a matrix-like structure [17-20]. Unfortunately, fibres show weak
mechanical properties and electrospinning is difficult to scale-up,
making these systems difficult to be applied.

A promising alternative is represented by melt-spinning technology.
In this case, a polymer melt is forced through a spinneret capillary to ob-
tain fibres with properties strongly related to the applied drawing ex-
tent. The application of this process, even if scalable up to industrial
level, is limited in the biomedical field where the usual thermolability
of bioactive molecules as drugs and/or the relatively poor elongational
properties of biocompatible polymer melts, further worsened by incor-
poration of additives, may prevent a satisfactory drawing of fibres
compromising their ultimate mechanical properties.

Among the strategies useful to control drug release from a
polymer matrix, the inclusion of lamellar structures opens new
opportunities to develop smart systems. Recently, magnesium
and aluminium hydroxycarbonates referred to as hydrotalcite-like
compounds (HT) intercalating bioactive molecules have been proposed
[21-24]. These systems consist of a layer of inorganic clays which,
under specific conditions, self-organize to form a bilayer. In particular
Mg/Al LDHs, where some Mg(II) cations are isomorphously replaced
by AI(III) cations, generate positive charges balanced by the presence
of counteranions located in the interlamellar region. The possibility of re-
placing these anions by simple ion-exchange procedures makes LDHs a
unique class of layered solids to be used as hosts of drugs bearing a neg-
ative charge. HTs have already been proven to be biocompatible and
some of them are already used in clinical practice as antiacids because
of their antipepsin activity [24]. In specific conditions, HT can intercalate
different anions or biologically active molecules such as anionic non-
steroidal anti-inflammatory drugs (NSAID) [25], antibiotics [26], up to
around 50% by weight and form organic-inorganic nanohybrids. De-
pending on drug features (solubility, molecular weight, affinity to HT),
fast dissolution or sustained release of the drug can be accomplished as
a consequence of a de-intercalation process [27,28]. Furthermore, a
body of interest is growing on the development of novel composites
based on inorganic layered materials and organic polymers. Recent stud-
ies report on the possibility to introduce organically-modified HT in dif-
ferent polymers as fillers opening a new way to integration of bioactive
HT in polymeric films, membranes or fibres with different potential ap-
plications in industrial and biomedical field [29-31]. In this context, on
the basis of an European patent owned by some participants to this
research [32], Sammartino et al. [31] incorporated nanohybrids contain-
ing the NSAID Diclofenac (Dic) into poly(e-caprolactone) (PCL) films and
demonstrated effective control of drug release as compared to free drug
directly dispersed into the polymer.

Prompted by these considerations, in this paper we offer a proof of
principle on the possibility to obtain an anti-inflammatory sustained-
release biodegradable suture through the incorporation of a free drug
and/or a drug-HT nanohybrid in a thermoplastic polymer. To this
purpose a Dic-HT nanohybrid was incorporated in a fibre of
poly(e-caprolactone) (Fig. 1). The fibre was produced by melt spinning
and characterized in terms of morphology, size, mechanical properties,
drug release and in vivo performance.

2. Materials and methods
2.1. Materials

A nanohybrid containing synthetic hydrotalcite and Diclofenac
(HT-Dic, [Mg,AI(OH)g] (C14H10CI,NO-) « 2H,0, Mg/Al ratio 1.8, distance

between layers = 23.6 A, moisture 7.0%, Diclofenac loading = 59.6%)
was obtained from Prolabin & Tefarm (Italy). Diclofenac sodium (Dic)
was purchased from Farmalabor (Italy). Poly(e-caprolactone), PCL,
used for this study (CAPA® 6800) was from Perstorp Corporation
(UK). HPLC-grade tetrahydrofuran (THF), acetonitrile and methanol,
analysis-grade acetone and dichloromethane were from Carlo Erba
(Italy). Synthetic hydrotalcite (HT, MggAl,(CO3)(OHq¢) * 4H,0),
sodium chloride, potassium chloride, HPLC-grade trifluoroacetic acid
(TFA), sodium phosphate dibasic and potassium phosphate monobasic
(HPLC grade) were obtained from Sigma-Aldrich (USA). Distilled
filtered (0.22 um) water was employed.

2.2. Fibre production

Fibres were prepared through extrusion, drawing and subsequent
cold drawing to the final diameter of approximately 300 um. Prior to
the extrusion process, the components were separately sieved to obtain
a fine powder (97% of the powder passed through a #140 sieve with a
mesh size of 106 pm according to Ph. Eur. 7th edition). The mean
diameter and size distribution of powders were determined by laser
light scattering (Coulter LS 100Q, USA). Particle size is expressed as
volume mean diameter (um) 4 SD of values collected from three different
batches. For Zeta potential measurements, HT-Dic was dispersed in water
and analysed on a Zetasizer Nano Z (Malvern Instruments, UK).

The base materials were mixed in a HAAKE twin screw extruder
using a screw speed of 20 rpm and applying a temperature profile
going from 60 °C, at feed zone, to 100 °C at the die. The filament was
cooled in stagnant air (at 23 °C) and collected with a take-up speed of
4 m/min. The as-spun fibres (with a diameter of about 900 pm) were
drawn at 50 °C using a Conditioning Unit (DSM Xplore, The Netherland)
to the final diameter of about 300 pm (corresponding to a draw ratio of
9).

Different compositions of the fibres, reported in Table 1, were select-
ed in order to investigate i) the effect of Dic intercalated in HT (Dic-HT)
as compared to free Dic (PCL/HT-Dic vs. PCL/Dic); ii) the influence of HT
in fibres containing free Dic (PCL/HT/Dic vs. PCL/Dic) and iii) the

Suture

%

Polycaprolactone
matrix

Diclofenac

Hydrotalcite-Diclofenac

Fig. 1. The concept of anti-inflammatory fibres developed in the study.
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Table 1

Composition of PCL fibres.
Fibre PCL (%) HT-Dic (%) HT (%) Dic(%) Dic Diameter

(mg/cm)  (um)

PCL/HT/Dic 75 - 8 17 0.095 264 + 44
PCL/HT-Dic 82 18 - - 0.105 315 + 30
PCL/HT-Dic/Dic 75 17 0.080 328 + 67
PCL/Dic 82 - - 18 0.149 324 +£ 21

possible effect of free Dic in fibres involving intercalated Dic (PCL/HT-
Dic vs. PCL/HT-Dic/Dic). We fixed Dic loadings in the fibre at 9 and
18% by wt in order to test the system at high loading where control of
drug release is generally poor.

2.3. Mechanical properties

Tensile properties of straight and simple knotted (according to Ph.
Eur. 7th edition) fibres were measured using a universal testing
machine (Alpha Technologies mod. 2020) equipped with a 10 N load
cell. All tensile experiments were carried out at a strain rate of
300 mm/min, using a gage length of 150 mm, at 23 °C. For each sample,
at least five specimens were analysed (if the fibre broke in a clamp or
within 1 cm, the result was discarded and the test was repeated) and
average results are reported with their standard deviation. The mean
diameter was obtained after three measurements at points evenly
spaced along the suture using a 0.001 mm accuracy digital micrometer.

A
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Mechanical properties of fibres are expressed in terms of elastic
modulus, breaking load, breaking stress and percent elongation at break.

2.4. Scanning electron microscopy/Energy Dispersive X-ray microanalysis

Suture shape and morphology were analysed by scanning electron
microscopy (SEM) (Quanta 200 FEG; FEI, USA). To analyse internal
structure, fibre wire sections were prepared. The sample was included
into Tissue Tek® OCT (Sakura, Japan) and then cut into 40 pm slice
using a Tissue-Tek® Cryo3® Microtome/Cryostat (Sakura, Japan). The
samples were stuck on a metal stub and coated with gold under vacuum
evaporator for 90-120 s. Surface composition of the samples was inves-
tigated by Energy Dispersive X-ray spectroscopy (EDS) microanalysis
through a X-EDS detector (Oxford Inca Energy System 250 equipped
with INCAx-act LN2-free detector).

2.5. HPLC analysis of Diclofenac sodium

Dic analysis was carried out by RP-HPLC on a system consisting of a
FCV-10ALvp mixer, a LC-10ADvp pump equipped with a SIL-10ADvp
autoinjector, a SPD-10Avp UV-vis detector and a C-R6 integrator from
Shimadzu (Japan). The analysis was performed on a Luna 5u C18
(250 x 4.6 mm) (Phenomenex, USA) at a flow rate of 1.0 mL/min.
The injection volume was 20 pL in all the experiments and the detection
wavelength fixed at 238 nm.

For Dic quantitative analysis the mobile phase was acetonitrile/acid
water both modified with 0.1% TFA mixture in the ratio 70:30 v/v. A
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Fig. 2. Properties of HT-Dic. A) Size distribution; B) SEM micrograph; and C) release profile of Dic in PBS (NaCl 120 mM, KCl 2.7 mM, Na,HPO,4 10 mM), PBS2 (NaCl 240 mM, KCI 5.4 mM,
Na,HPO4 10 mM) and NaCl/KCl (NaCl 120 mM, KCl 2.7 mM) solution at pH 7.4 and 37 °C. Results are reported as mean =+ SD of three measurements.
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Dic standard solution in water was prepared and stored at 4 °C until use.
Calibration curve was constructed by injecting solutions with concen-
trations in the range 0.3-30 pg/mL LOD was 0.08 pg/mL whereas QOD
was 0.26 pg/mL.

2.6. In vitro release studies

In vitro release of Dic from the HT-Dic nanohybrid was evaluated by
dispersing 2 mg of HT-Dic in 5 mL of release medium at 37 °C. Three dif-
ferent release media were prepared: NaCl/KCl solution (NaCl 120 mM,
KCl 2.7 mM), Phosphate Buffer Saline (PBS, NaCl 120 mM, KCI 2.7 mM,
Na,HPO, 10 mM) and Phosphate Buffer Saline at double chloride con-
centrations (PBS2, NaCl 240 mM, KCl 5.4 mM, Na,HPO4 10 mM) both
at pH 7,4. At predetermined time intervals 1 mL of supernatant was col-
lected after centrifugation (5000 rpm 15 min 4 °C) and analysed by the
analytical method previously described for Dic quantification.

The in vitro release of Dic was evaluated by immersing three fibre
portions (3 cm) taken from different parts of extruded suture in 5 mL
of Phosphate Buffer Saline (PBS, NaCl 120 mM, KCI 2.7 mM e Na,HPO,4
10 mM) at pH 7.4 and 37 °C under gentle shaking. Periodically 1 mL of
release medium was collected and replaced with the same volume of
fresh medium. The samples were analysed by the analytical methods
previously described and results are reported in terms of released Dic
percent.

PCL/HT-

1mm

Fibre morphology was evaluated also at the end of the release exper-
iment. To this purpose, fibre was washed with water three times,
freeze-dried and then analysed by SEM.

2.7. In vivo experiments

Male CD1 mice (30-35 g) (Harlan, Italy) were purchased from
Harlan Italy (San Pietro al Natisone, UD, Italy) and housed in stainless
steel cages in a room kept at 22 4+ 1 °C with a 12:12 h light/dark
cycle. The animals were acclimated to their environment for 1 week
and had ad libitum access to standard rodent chow pellets. All proce-
dures met the guidelines of the Italian Ministry of Health (D.L. no. 116
of January 27, 1992) and guidelines in the European Communities Coun-
cil (Directive of November 24, 1986, 86/609/ECC).

Mice were anesthetized with ketamine (100 mg/kg) and xylazine
(10 mg/kg), the back was shaved and scrubbed with betadine, and an
incision (4 cm in length, and 0.2 cm in deep) was made in the middle
using a number 12 blade. Five different sutures were used: 1) PCL
suture; 2) PCL/HT/Dic, 3) PCL/Dic; 4) PCL/HT-Dic/Dic; and 5) PCL/
HT-Dic. The wounds were closed with three sutures for sub-
cutaneous and four sutures for cutaneous tissues. After 3 days from sur-
gery, mice were killed and cutaneous and sub-cutaneous tissues were
removed. The samples were fixed in 10% neutral buffered formalin,
then processed and embedded in paraffin, according to standardized
protocol. Sections of 4 um were stained with haematoxylin and eosin.

PCL/HT/Dic

Mean (%) Standard Deviation
Cc 66.74 0.20
o 26.16 0.18
Mg 2.06 0.21
Al 1.21 0.07
Cl 3.83 0.10

Fig. 3. SEM images of fibre surface (A) and EDS analysis of PCL/HT-Dic fibre surface (B). The sample is representative of outer fibre surface.
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Two histological parameters were evaluated in each sample: inflam-
matory infiltrate and granulation tissue. They were graded according to
semi quantitative score as:

+ = weak inflammatory infiltrate/low amount of granulation tissue

++ = moderate inflammatory infiltrate/moderate amount of granulation tissue

++ + = intense inflammatory infiltrate/intense amount of granulation tissue.

3. Results and discussion
3.1. Fibre extrusion and morphology

The aim of this work was to develop an anti-inflammatory drug-
eluting synthetic suture and to test its effects in vivo. Modulation of
drug delivery rate was considered as a key parameter to achieve regional
prolonged release and to promote healing process. We focused on melt-
spinning technique to produce polymeric fibres with regular circular
cross section since it couples good versatility, fast industrial scale-up
and does not require organic solvents. Nevertheless, melt-spinning per-
fectly fits loading of very hydrophilic drugs in water-insoluble polymers
such as PCL ensuring high entrapment efficiency. After characterization,
the HT-Dic nanohybrid was included in PCL fibres, which were then
drawn to obtain suitable diameter and fully investigated.

Properties of HT-Dic nanohybrid are reported in Fig. 2. The size
distribution curve showed a monomodal trend and a HT-Dic mean
particle diameter of 2.4 4+ 0.2 pm. Surface charge of the nanohybrid

PCL/HT-Dic/Dic

PCL/HT-Dic
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Fig. 5. Elastic modulus of fibres with different compositions. Results are the mean of five
measurements, error bars are standard deviations.

was slightly negative. SEM analysis confirmed the size and the HT
lamellar structure.

The release profile of Dic from the HT-Dic nanohybrid was evalu-
ated in physiologically-simulated conditions. HT consists of layers of
magnesium hydroxide, with aluminium isomorphically substituted
to give a net positive charge inside the layers that is balanced by in-
terlayer hydrated Dic anions. To achieve drug release, the presence of

PCL/HT/Dic

Fig. 4. SEM images of fibre section. The sample is representative of other inner sections.



0. Catanzano et al. / Materials Science and Engineering C 43 (2014) 300-309 305

A 60
mmmm Straight
., 50 —= Knotted -
P
R
Ke)
o> 30
S
‘FB 20 +
o
Q
iﬁ | (il s
0 v © o 'ﬁ
O N N ¢
¢ S § 90\50 «0"°\0 «©
) o o)
< QOO <
B
500
& 400 ¥ ]
=3
1)
» 300 1
o
@
gﬁ 200 1
x
[
Q 100 f iﬁ 1
’ If
0 v o 9 © ©
@) N '\ N N
Q \(\/\O 0 0\\0 \é\\\o
o &
< o) 4
Q
C
120
g 100 1
K
O 80 1
Q
T 6ol J
<
RS
© 40t 4
(o))
8 20
: [ [1 1IN
0 Vv O ¢ (]
@) Q\ N \ Q\
< « N L«
K@
Q QO\)

Fig. 6. Mechanical properties of straight and knotted fibres: breaking load (A); breaking
stress (B); and elongation at break (C). Results are the mean of five measurements,
error bars are standard deviations.

anions in the medium capable of exchange with those located inside
the nanohybrid is needed. Since in a physiological environment the
most available anions are chlorines and phosphates, Dic release
from HT-Dic was tested in media at different chloride and phosphate
concentrations (Fig. 2c). As expected for this type of system, release
rate was strongly influenced by the ionic composition of the medi-
um. PBS ensured a complete release of Dic from the intercalation
product and was selected for further release experiments on fibres.

Biodegradable PCL fibres with different compositions were proc-
essed by a two-step melt-spinning method (melt extrusion and hot
draw) (Table 1). Melt spinning has proven to be a robust method for
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Fig. 7. Dic release from fibres in PBS (10 mM) at pH 7.4 and 37 °C. Results are reported as
mean =+ standard deviation of three measurements. Lines through data points are to guide
the eye.

the production of several biomedical devices and it has been found to
be useful in the pharmaceutical industry as well [33]. Since many
years this technique has been already used for the industrial production
of sutures because it is an economical process with reduced production
time, few processing steps, and offering the possibilities to work in con-
tinuous. Furthermore, the capacity of melt extrusion to disperse differ-
ent active pharmaceutical ingredients in a matrix at molecular level
(forming solid solutions) has been seen as a possible strategy to increase
solubility and bioavailability of water-insoluble compounds [34,35].
One disadvantage of this production method is the necessity to operate
at high temperature in order to melt the polymer while most drugs may
degrade at high temperature. In the present case, RP-HPLC qualitative
analysis of Dic extracted from the PCL/HT-Dic after extrusion confirmed
that the production method does not affect drug stability (Supplemen-
tary material S1). Nevertheless, this strategy of drug loading through HT
can be of benefit for those molecules with poor thermal stability as well
as drugs undergoing polymorphism in order to maintain their chemical-
physical integrity.

After extrusion, fibres were analysed by scanning electron microsco-
py (SEM) to evaluate size and surface morphology (Fig. 3). In details, as
spun fibre of PCL formed at 100 °C die temperature showed extruding
lines on the surface (Fig. 3a), likely due to polymer curing in the applied
processing conditions. Nevertheless, the presence of some particles on
the surface of the fibres containing HT or HT-Dic was observed. To
investigate the nature of these particles, fibre surface was analysed by
Energy Dispersive X-ray spectroscopy (EDS). Particles were composed
mainly by magnesium and aluminium, thereby suggesting that
HT-Dic particles also locate on the filament surface during processing
(Fig. 3b).

To evaluate the inner morphology of the fibres, SEM images on fibre
sections were taken (Fig. 4). All the fibres had round cross-sectional
geometry and non-porous morphology, with an average diameter around
0.3 mm comparable with those measured by a calibre (Table 1). Micro-
graphs indicated a rather homogeneous dispersion of included compo-
nents with the presence of small internal voids due to a decrease of
feeding load during extrusion.

3.2. Mechanical properties

Given that the use of sutures strongly depends on mechanical
properties, their strength is the most frequently reported parameter
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PCL/HT-Dic/Dic

PCL/HT/Dic

PCL/HT-Dic

Fig. 8. SEM images of fibres after 70 days of incubation in PBS (10 mM) at pH 7.4 and 37 °C.

[1]. There should be a proper match between suture strength and
tissue strength [36] and for this reason the selection of proper suture
depends also from the tissue involved. Furthermore, tensile proper-
ties of sutures are important when making a knot. If the material is
too weak and the knotting force is stronger than tensile strength of
suture material, suture can easily break while tightening the knot
[37,38].

Results of tensile tests performed on melt-spun straight and knotted
filaments are shown in Figs. 5 and 6.

The elastic modulus data (Fig. 5) indicated that the inclusion of
particulate components decreased the stiffness of the fibre with respect
to pure PCL. In particular, the addition of HT-Dic caused a reduction of
tensile modulus from 1400 MPa to about 1100 MPa (—25%) while the
inclusion of Dic caused a remarkable reduction of the modulus up to
about 480 MPa (corresponding to — 66%). Systems including both Dic
and HT as well as Dic and HT-Dic also showed a significant decrease
in modulus.

Tensile properties (breaking stress and elongation at break) of
straight and knotted fibres are shown in Fig. 6. Data indicated that with-
in experimental errors:

- the knotted fibres had the same breaking stress and the same elon-
gation at break of straight fibres thus indicating that the knot does
not represent a weakness to the fibre;

- composite fibres showed a three-fold decrease with respect to pure
PCL fibres in breaking stress;

- fibres containing HT-Dic showed a fragile behaviour with elonga-
tions at break around 20% (other systems being around 70%) and a
tenacity in the range 10-17 MJ/m [3] (other systems being around
70 MJ/m?>).

The effect of knotting on the strength of various sutures was studied
by Kim et al. [38], who concluded that the knotting of a suture reduced
its tensile strength. In the present case the knots do only have a marginal
influence on the mechanical behaviour of the fibres, and this is an
advantage for their use in slow-healing tissues (skin, fascia and
tendons).

3.3. In vitro release and degradation

The release profile of Dic from fibres was assessed in PBS at pH 7.4
and 37 °C, simulating physiological conditions (Fig. 7). In all the sam-
ples, an initial burst of Dic was observed. The control fibre containing
free HT and Dic (PCL/HT/Dic, Dic content 0.095 mg/cm) completely elut-
ed its Dic content in around 14 days, thus showing a poor control over
release rate. The fibres containing HT-Dic (PCL/HT-Dic, Dic content
0.105 mg/cm) showed a nicely shaped release profile reaching com-
plete Dic release after 55 days. In the fibre containing both HT-Dic



0. Catanzano et al. / Materials Science and Engineering C 43 (2014) 300-309 307

Table 2
Inflammatory infiltrate and granulation tissue in specimens.

Inflammatory infiltrate Granulation tissue

Fibre Cutaneous  Sub-cutaneous  Cutaneous  Sub-cutaneous
tissue tissue tissue tissue

PCL/Dic ++ ++/+++ - -

PCL/HT/Dic +/— + - -

PCL/HT-Dic + ++ - +

PCL/HT-Dic/Dic + ++ - -

PCL +/++ +/++ - -

+ = weak inflammatory infiltrate/low amount of granulation tissue.
++ = moderate inflammatory infiltrate/moderate amount of granulation tissue.
+++ = intense inflammatory infiltrate/intense amount of granulation tissue.

and a fraction of free Dic (PCL/HT-Dic/Dic, Dic content 0.080 mg/cm),
release rate was again well modulated besides the presence of free
Dic. Dic amount released from PCL fibre (PCL/Dic, Dic content
0.0149 mg/cm) was higher than for the other fibres due to a higher
Dic loading. After 70 days Dic was still released in native form indicating
the protective effect of PCL and HT on its chemical structure

Cutaneous tissue

PCL/HT-Dic

PCL/Dic

PCL

(Supplementary material S1). These data suggest that a fine tuning of
release profiles can be accomplished playing on reciprocal HT-Dic/Dic
ratio and optimal amount of released Dic may be selected according to
the therapeutic needs.

In order to evaluate the mode of degradation, fibre morphology was
analysed after 70 days of release in PBS at pH 7.4 at 37 °C (Fig. 8).
Surface modification of the fibre, likely due to slow polymer progressive
degradation, was observed without the occurrence of fractures. As
expected, the extent of polymer degradation was very limited and con-
fined to the surface, confirming that this kind of system behaves mainly
as a surface eroding system. Nevertheless, surface degradation of PCL
determined the outcrop on the surface of HT and HT-Dic as shown by
EDS analysis. This phenomenon was particularly evident in the PCL/
HT/Dic fibre.

Drug release kinetics from a polymer matrix mainly depends
on three distinct steps; (a) liquid penetration into the matrix,
(b) dissolution and, (c) diffusion of drug, which may be the rate deter-
mining step for drug release. Progressive matrix degradation can affect
drug diffusion rate along time. The degradation mode observed for
PCL fibres suggests that Dic release is predominantly controlled by

Sub-Cutaneous tissue

Fig. 9. Haematoxylin and eosin-stained sections of cutaneous and sub-cutaneous tissues from mice at suture site, after 3 days from surgery. Arrows indicate small blood vessels and

fibroblasts.
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drug dissolution and diffusion in the polymer matrix. Indeed both Dic
and HT may affect the PCL structure and, thus, the release mechanisms.
In the case of PCL/Dic, drug diffusion in the rubbery PCL phase as well
as through polymer mesopores is the prevailing mechanism. In par-
ticular, except that the crystallinity of the matrix is not significantly
altered by additives, Dic could partially bind to PCL with effects of
plasticization confirmed in the case of the PCL/Dic fibre showing
stiffness lower than that of pure PCL. This hypothesis also allows to
explain the rapid diffusion of drug shown by the PCL/Dic filaments
compared to other ones. When the fibre contains HT-Dic nanohybrid,
Dic needs to diffuse out of the lamellar structure and then through the
polymer matrix, which adds a supplementary release step contributing
to the overall release profile. In fact, HT can favour an increase of the
tortuosity and, consequently, of the diffusion length with effects that
depend on both the content and the distribution of this filler with signif-
icant complexity.

Overall, these results suggest that direct incorporation of Dic in PCL
fibres controls drug release rate but results in poor suture mechanical
properties. On the other side, incorporation of HT-Dic nanohybrids in
the fibres allows to control effectively both release profile and mechan-
ical properties.

3.4. In vivo effects

To assess in vivo anti-inflammatory effect, fibres were employed
to close a traumatic wound in mice. Two histological parameters
were evaluated in each sample: inflammatory infiltrate and granulation
tissue (Table 2).

Sections of cutaneous and sub-cutaneous tissue at suture site
were stained by haematoxylin and eosin (Fig. 9). In samples containing
PCL/Dic an inflammatory infiltrate variable from moderate to intense
was observed, especially at the level of the sub-cutaneous tissue, with-
out formation of granulation tissue. In all the other specimens no varia-
tions in the inflammatory response was observed, except for PCL/HT/Dic
where this reaction was found to be less intense. It is worth of note that
the presence of granulation tissue was observed only in the sub-
cutaneous tissue of PCL/HT-Dic sample. For PCL fibre, the inflammatory
response appeared to be less intense, again without the formation of
granulation tissue. Regardless of the surgical site, the inflammatory
reaction in the injured tissue reduces the damage, removes damaged
tissue components and stimulates the deposition of extracellular ma-
trix, inducing angiogenesis. Therefore the observation that a granulation
tissue is present can be related to an expression of a more effective and
early reparative process in progress.

Sustained Dic release may represent a clinically relevant therapeutic
modality. In fact, besides anti-inflammatory effect, sustained Dic release
can have an impact also in the management of postoperative pain, thus
minimizing the dose of medications to lessen side effects while still pro-
viding adequate analgesia. To date, perioperative administration of a
single local dose of nonsteroidal anti-inflammatory drugs has shown in-
conclusive efficacy [39]. Rather than a single bolus, Lavand’homme et al.
[40] found that continuous intrawound infusion of Dic demonstrated a
greater opioid-sparing effect and better postoperative analgesia than
the same dose administered as an intermittent intravenous bolus.
Thus, Dic-eluting sutures can combine delivery concepts to a biomedical
device to exert both effective control of inflammatory phase and allevi-
ation of post-operative pain.

4. Conclusions

In summary, we have developed a drug-eluting anti-inflammatory
suture that could have the dual function of closing the site of wound
excision while providing sustained localized delivery of Diclofenac.
The melt spun fibre containing HT-Dic nanohybrid has shown a homog-
enous distribution of filler, good mechanical properties, tuneable
release rate as a function of composition and in vivo activity that

suggests its use in surgical practice. Overall, the strategy proposed is of
great potential and versatility since melt-spinning is a simple and repro-
ducible process that can be scaled-up at industrial level. Nevertheless,
control of fibre properties by nanohybrid should help to extend the ap-
plicability of this concept to other bioactive drugs.
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