155 research outputs found
Another look at the BL Lacertae flux and spectral variability
The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope
(WEBT) monitored BL Lacertae in 2008-2009 at radio, near-IR, and optical
frequencies. During this period, high-energy observations were performed by
XMM-Newton, Swift, and Fermi. We analyse these data with particular attention
to the calibration of Swift UV data, and apply a helical jet model to interpret
the source broad-band variability. The GASP-WEBT observations show an optical
flare in 2008 February-March, and oscillations of several tenths of mag on a
few-day time scale afterwards. The radio flux is only mildly variable. The UV
data from both XMM-Newton and Swift seem to confirm a UV excess that is likely
caused by thermal emission from the accretion disc. The X-ray data from
XMM-Newton indicate a strongly concave spectrum, as well as moderate flux
variability on an hour time scale. The Swift X-ray data reveal fast (interday)
flux changes, not correlated with those observed at lower energies. We compare
the spectral energy distribution (SED) corresponding to the 2008 low-brightness
state, which was characterised by a synchrotron dominance, to the 1997 outburst
state, where the inverse-Compton emission was prevailing. A fit with an
inhomogeneous helical jet model suggests that two synchrotron components are at
work with their self inverse-Compton emission. Most likely, they represent the
radiation from two distinct emitting regions in the jet. We show that the
difference between the source SEDs in 2008 and 1997 can be explained in terms
of pure geometrical variations. The outburst state occurred when the
jet-emitting regions were better aligned with the line of sight, producing an
increase of the Doppler beaming factor. Our analysis demonstrates that the jet
geometry can play an extremely important role in the BL Lacertae flux and
spectral variability.Comment: 12 pages, 10 figures, accepted for publication in A&
Multifrequency Photo-polarimetric WEBT Observation Campaign on the Blazar S5 0716+714: Source Microvariability and Search for Characteristic Timescales
Here we report on the results of the WEBT photo-polarimetric campaign
targeting the blazar S5~0716+71, organized in March 2014 to monitor the source
simultaneously in BVRI and near IR filters. The campaign resulted in an
unprecedented dataset spanning \,h of nearly continuous, multi-band
observations, including two sets of densely sampled polarimetric data mainly in
R filter. During the campaign, the source displayed pronounced variability with
peak-to-peak variations of about and "bluer-when-brighter" spectral
evolution, consisting of a day-timescale modulation with superimposed hourlong
microflares characterized by \,mag flux changes. We performed an
in-depth search for quasi-periodicities in the source light curve; hints for
the presence of oscillations on timescales of \,h and \,h do
not represent highly significant departures from a pure red-noise power
spectrum. We observed that, at a certain configuration of the optical
polarization angle relative to the positional angle of the innermost radio jet
in the source, changes in the polarization degree led the total flux
variability by about 2\,h; meanwhile, when the relative configuration of the
polarization and jet angles altered, no such lag could be noted. The
microflaring events, when analyzed as separate pulse emission components, were
found to be characterized by a very high polarization degree () and
polarization angles which differed substantially from the polarization angle of
the underlying background component, or from the radio jet positional angle. We
discuss the results in the general context of blazar emission and energy
dissipation models.Comment: 16 pages, 17 Figures; ApJ accepte
The infrared JHK light curves of RR Lyr
We present infrared JHK time series photometry of the variable star RR Lyr,
that allow us to construct the first complete and accurate infrared light
curves for this star. The derived mean magnitudes are =6.74 +/- 0.02,
=6.60 +/- 0.03 and =6.50 +/- 0.02. The magnitude is used to estimate
the reddening, the mass, the mean luminosity and temperature of this variable
star. The use of these RR Lyr data provide a more accurate absolute calibration
of the P-L_K-[Fe/H] relation, and a distance modulus (m-M)_0=18.48 +/- 0.11 to
the globular cluster Reticulum in the LMC.Comment: 6 pages, 2 figures, accepted for publication by MNRA
Systematic detection of magnetic fields in massive, late-type supergiants
We report the systematic detection of magnetic fields in massive (M > 5
M) late-type supergiants, using spectropolarimetric observations
obtained with ESPaDOnS at the Canada-France-Hawaii Telescope. Our observations
reveal detectable Stokes V Zeeman signatures in Least-Squares Deconvolved mean
line profiles in one-third of the observed sample of more than 30 stars. The
signatures are sometimes complex, revealing multiple reversals across the line.
The corresponding longitudinal magnetic field is seldom detected, although our
longitudinal field error bars are typically 0.3 G (). These
characteristics suggest topologically complex magnetic fields, presumably
generated by dynamo action. The Stokes V signatures of some targets show clear
time variability, indicating either rotational modulation or intrinsic
evolution of the magnetic field. We also observe a weak correlation between the
unsigned longitudinal magnetic field and the CaII K core emission equivalent
width of the active G2Iab supergiant ~Dra and the G8Ib supergiant
~Gem.Comment: 8 pages, 1 table, 6 figures, accepted for publication in MNRA
Radio-to-UV monitoring of AO 0235+164 by the WEBT and Swift during the 2006--2007 outburst
The blazar AO 0235+164 was claimed to show a quasi-periodic behaviour in the
radio and optical bands. Moreover, an extra emission component contributing to
the UV and soft X-ray flux was detected, whose nature is not yet clear. A
predicted optical outburst was observed in late 2006/early 2007. We here
present the radio-to-optical WEBT light curves during the outburst, together
with UV data acquired by Swift in the same period. We found the optical
outburst to be as strong as the big outbursts of the past: starting from late
September 2006, a brightness increase of 5 mag led to the outburst peak in
February 19-21, 2007. We also observed an outburst at mm and then at cm
wavelengths, with an increasing time delay going toward lower frequencies
during the rising phase. Cross-correlation analysis indicates that the 1 mm and
37 GHz flux variations lagged behind the R-band ones by about 3 weeks and 2
months, respectively. These short time delays suggest that the corresponding
jet emitting regions are only slightly separated and/or misaligned. In
contrast, during the outburst decreasing phase the flux faded contemporaneously
at all cm wavelengths. This abrupt change in the emission behaviour may suggest
the presence of some shutdown mechanism of intrinsic or geometric nature. The
behaviour of the UV flux closely follows the optical and near-IR one. By
separating the synchrotron and extra component contributions to the UV flux, we
found that they correlate, which suggests that the two emissions have a common
origin.Comment: 9 pages, 7 figures, in press for Astronomy and Astrophysic
WEBT and XMM-Newton observations of 3C 454.3 during the post-outburst phase. Detection of the little and big blue bumps
The blazar 3C 454.3 underwent an unprecedented optical outburst in spring
2005. This was first followed by a mm and then by a cm radio outburst, which
peaked in February 2006. We report on follow-up observations by the WEBT to
study the multiwavelength emission in the post-outburst phase. XMM-Newton
observations on July and December 2006 added information on the X-ray and UV
fluxes. The source was in a faint state. The radio flux at the higher
frequencies showed a fast decreasing trend, which represents the tail of the
big radio outburst. It was followed by a quiescent state, common at all radio
frequencies. In contrast, moderate activity characterized the NIR and optical
light curves, with a progressive increase of the variability amplitude with
increasing wavelength. We ascribe this redder-when-brighter behaviour to the
presence of a "little blue bump" due to line emission from the broad line
region, which is clearly visible in the source SED during faint states.
Moreover, the data from the XMM-Newton OM reveal a rise of the SED in the UV,
suggesting the existence of a "big blue bump" due to thermal emission from the
accretion disc. The X-ray spectra are well fitted with a power-law model with
photoelectric absorption, possibly larger than the Galactic one. However, the
comparison with previous X-ray observations would imply that the amount of
absorbing matter is variable. Alternatively, the intrinsic X-ray spectrum
presents a curvature, which may depend on the X-ray brightness. In this case,
two scenarios are possible.Comment: 9 pages, 7 figures, accepted for publication in A&
The unprecedented optical outburst of the quasar 3C 454.3. The WEBT campaign of 2004-2005
The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting
more than 1 year and culminating in spring 2005. The maximum brightness
detected was R = 12.0, which represents the most luminous quasar state thus far
observed (M_B ~ -31.4). In order to follow the emission behaviour of the source
in detail, a large multiwavelength campaign was organized by the Whole Earth
Blazar Telescope (WEBT). Continuous optical, near-IR and radio monitoring was
performed in several bands. ToO pointings by the Chandra and INTEGRAL
satellites provided additional information at high energies in May 2005. The
historical radio and optical light curves show different behaviours. Until
about 2001.0 only moderate variability was present in the optical regime, while
prominent and long-lasting radio outbursts were visible at the various radio
frequencies, with higher-frequency variations preceding the lower-frequency
ones. After that date, the optical activity increased and the radio flux is
less variable. This suggests that the optical and radio emissions come from two
separate and misaligned jet regions, with the inner optical one acquiring a
smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index
behaviour (generally redder-when-brighter) during the outburst suggests the
presence of a luminous accretion disc. A huge mm outburst followed the optical
one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux
started to increase in early 2005 and reached a maximum at the end of our
observing period (end of September 2005). VLBA observations at 43 GHz during
the summer confirm theComment: 7 pages, 4 figures, to be published in A&
The correlated optical and radio variability of BL Lacertae. WEBT data analysis 1994-2005
Since 1997, BL Lacertae has undergone a phase of high optical activity, with
the occurrence of several prominent outbursts. Starting from 1999, the Whole
Earth Blazar Telescope (WEBT) consortium has organized various multifrequency
campaigns on this blazar, collecting tens of thousands of data points. One of
the main issues in the study of this huge dataset has been the search for
correlations between the optical and radio flux variations, and for possible
periodicities in the light curves. The analysis of the data assembled during
the first four campaigns (comprising also archival data to cover the period
1968-2003) revealed a fair optical-radio correlation in 1994-2003, with a delay
of the hard radio events of ~100 days. Moreover, various statistical methods
suggested the existence of a radio periodicity of ~8 years. In 2004 the WEBT
started a new campaign to extend the dataset to the most recent observing
seasons, in order to possibly confirm and better understand the previous
results. In this campaign we have collected and assembled about 11000 new
optical observations from twenty telescopes, plus near-IR and radio data at
various frequencies. Here, we perform a correlation analysis on the long-term
R-band and radio light curves. In general, we confirm the ~100-day delay of the
hard radio events with respect to the optical ones, even if longer (~200-300
days) time lags are also found in particular periods. The radio
quasi-periodicity is confirmed too, but the "period" seems to progressively
lengthen from 7.4 to 9.3 years in the last three cycles. The optical and radio
behaviour in the last forty years suggests a scenario where geometric effects
play a major role. In particular, the alternation of enhanced and suppressed
optical activity (accompanied by hard and soft radio events, respectively) canComment: 6 pages, 4 figure
Multifrequency monitoring of the blazar 0716+714 during the GASP-WEBT-AGILE campaign of 2007
Since the CGRO operation in 1991-2000, one of the primary unresolved
questions about the blazar gamma-ray emission has been its possible correlation
with the low-energy (in particular optical) emission. To help answer this
problem, the Whole Earth Blazar Telescope (WEBT) consortium has organized the
GLAST-AGILE Support Program (GASP) to provide the optical-to-radio monitoring
data to be compared with the gamma-ray detections by the AGILE and GLAST
satellites. This new WEBT project started in early September 2007, just before
a strong gamma-ray detection of 0716+714 by AGILE. We present the GASP-WEBT
optical and radio light curves of this blazar obtained in July-November 2007,
about various AGILE pointings at the source. We construct NIR-to-UV spectral
energy distributions (SEDs), by assembling GASP-WEBT data together with UV data
from the Swift ToO observations of late October. We observe a contemporaneous
optical-radio outburst, which is a rare and interesting phenomenon in blazars.
The shape of the SEDs during the outburst appears peculiarly wavy because of an
optical excess and a UV drop-and-rise. The optical light curve is well sampled
during the AGILE pointings, showing prominent and sharp flares. A future
cross-correlation analysis of the optical and AGILE data will shed light on the
expected relationship between these flares and the gamma-ray events.Comment: 5 pages, 5 figures, to be published in A&A (Letters); revised to
match the final version (changes in Fig. 5 and related text
The brightest gamma-ray flaring blazar in the sky: AGILE and multi-wavelength observations of 3C 454.3 during November 2010
Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all
frequencies, and during the last four years it has exhibited more than one
gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky.
We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and
GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare
of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520),
3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s
on a time scale of about 12 hours, more than a factor of 6 higher than the flux
of the brightest steady gamma-ray source, the Vela pulsar, and more than a
factor of 3 brighter than its previous super-flare on 2009 December 2-3. The
multi-wavelength data make a thorough study of the present event possible: the
comparison with the previous outbursts indicates a close similarity to the one
that occurred in 2009. By comparing the broadband emission before, during, and
after the gamma-ray flare, we find that the radio, optical and X-ray emission
varies within a factor 2-3, whereas the gamma-ray flux by a factor of 10. This
remarkable behavior is modeled by an external Compton component driven by a
substantial local enhancement of soft seed photons.Comment: Accepted for publication in ApJ Letters. 18 Pages, 4 Figures, 1 Tabl
- …