1,316 research outputs found

    Probing early-universe phase transitions with CMB spectral distortions

    Get PDF
    Global, symmetry-breaking phase transitions in the early universe can generate scaling seed networks which lead to metric perturbations. The acoustic waves in the photon-baryon plasma sourced by these metric perturbations, when Silk damped, generate spectral distortions of the cosmic microwave background (CMB). In this work, the chemical potential distortion (μ\mu) due to scaling seed networks is computed and the accompanying Compton yy-type distortion is estimated. The specific model of choice is the O(N)O(N) nonlinear σ\sigma-model for N≫1N\gg 1, but the results remain the same order of magnitude for other scaling seeds. If CMB anisotropy constraints to the O(N)O(N) model are saturated, the resulting chemical potential distortion μ≲2×10−9\mu \lesssim 2\times 10^{-9}.Comment: 17 pages, 6 figures, v2: References added, submitted to Phys. Rev.

    Crystal-field effects in the mixed-valence compounds Yb2M3Ga9 (M= Rh, Ir)

    Full text link
    Magnetic susceptibility, heat capacity, and electrical resistivity measurements have been carried out on single crystals of the intermediate valence compounds Yb2Rh3Ga9 and Yb2Ir3Ga9. These measurements reveal a large anisotropy due apparently to an interplay between crystalline electric field (CEF) and Kondo effects. The temperature dependence of magnetic susceptibility can be modelled using the Anderson impurity model including CEF within an approach based on the Non-Crossing Approximation.Comment: Accepted to Phys. Rev.

    Spectral distortions from the dissipation of tensor perturbations

    Get PDF
    Spectral distortions of the cosmic microwave background (CMB) may become a powerful probe of primordial perturbations at small scales. Existing studies of spectral distortions focus almost exclusively on primordial scalar metric perturbations. Similarly, vector and tensor perturbations should source CMB spectral distortions. In this paper, we give general expressions for the effective heating rate caused by these types of perturbations, including previously neglected contributions from polarization states and higher multipoles. We then focus our discussion on the dissipation of tensors, showing that for nearly scale invariant tensor power spectra, the overall distortion is some six orders of magnitudes smaller than from the damping of adiabatic scalar modes. We find simple analytic expressions describing the effective heating rate from tensors using a quasi-tight coupling approximation. In contrast to adiabatic modes, tensors cause heating without additional photon diffusion and thus over a wider range of scales, as recently pointed out by Ota et. al 2014. Our results are in broad agreement with their conclusions, but we find that small-scale modes beyond k< 2x10^4 Mpc^{-1} cannot be neglected, leading to a larger distortion, especially for very blue tensor power spectra. At small scales, also the effect of neutrino damping on the tensor amplitude needs to be included.Comment: 14 pages, 7 figures, accepted version (MNRAS

    Mars: Noachian hydrology by its statistics and topology

    Get PDF
    Discrimination between fluvial features generated by surface drainage and subsurface aquifer discharges will provide clues to the understanding of early Mars' climatic history. Our approach is to define the process of formation of the oldest fluvial valleys by statistical and topological analyses. Formation of fluvial valley systems reached its highest statistical concentration during the Noachian Period. Nevertheless, they are a scarce phenomenom in Martian history, localized on the craterized upland, and subject to latitudinal distribution. They occur sparsely on Noachian geological units with a weak distribution density, and appear in reduced isolated surface (around 5 x 10(exp 3)(sq km)), filled by short streams (100-300 km length). Topological analysis of the internal organization of 71 surveyed Noachian fluvial valley networks also provides information on the mechanisms of formation

    On the approximation of the limit cycles function

    Get PDF
    We consider planar vector fields depending on a real parameter. It is assumed that this vector field has a family of limit cycles which can be described by means of the limit cycles function ll. We prove a relationship between the multiplicity of a limit cycle of this family and the order of a zero of the limit cycles function. Moreover, we present a procedure to approximate l(x)l(x), which is based on the Newton scheme applied to the Poincar'e function and represents a continuation method. Finally, we demonstrate the effectiveness of the proposed procedure by means of a Li'enard system. The obtained result supports a conjecture by Lins, de Melo and Pugh

    Dulac-Cherkas functions for generalized Liénard systems

    Get PDF
    Dulac-Cherkas functions can be used to derive an upper bound for the number of limit cycles of planar autonomous differential systems including criteria for the non-existence of limit cycles, at the same time they provide information about their stability and hyperbolicity. In this paper, we present a method to construct  a special class of Dulac-Cherkas functions for  generalized Liénard systems of the type dxdt=y, dydt=∑j=0lhj(x)yj \frac{dx}{dt} = y, \quad  \frac{dy}{dt} = \sum_{j=0}^l h_j(x) y^j with l≥1l \ge 1. In case 1≤l≤31 \le l \le 3,  linear differential equations play a key role in this process, for l≥4 l \ge 4, we have to solve a system of linear differential and algebraic equations, where the number of equations is larger than the number of unknowns. Finally,  we show that Dulac-Cherkas functions can be used to construct generalized Liénard systems with any ll possessing limit cycles

    On the origin of heavy quasiparticles in LiV_2O_4

    Full text link
    An explanation is provided for the heavy quasiparticle excitations in LiV_2O_4. It differs considerably from that of other known heavy-fermion systems. Main ingredients of our theory are the cubic spinel structure of the material and strong short-range correlations of the d electrons. The large gamma-coefficient is shown to result from excitations of Heisenberg spin 1/2 rings and chains. The required coupling constant is calculated from LDA+U calculations and is found to be of the right size. Also the calculated Sommerfeld-Wilson ratio is reasonably close to the observed one.Comment: REVTEX, 5 pages, 2 figure

    Pair-Breaking in Rotating Fermi Gases

    Full text link
    We study the pair-breaking effect of rotation on a cold Fermi gas in the BCS-BEC crossover region. In the framework of BCS theory, which is supposed to be qualitatively correct at zero temperature, we find that in a trap rotating around a symmetry axis, three regions have to be distinguished: (A) a region near the rotational axis where the superfluid stays at rest and where no pairs are broken, (B) a region where the pairs are progressively broken with increasing distance from the rotational axis, resulting in an increasing rotational current, and (C) a normal-fluid region where all pairs are broken and which rotates like a rigid body. Due to region B, density and current do not exhibit any discontinuities.Comment: 4 pages, 2 figures; v2: discussion clarified, typos corrected, one reference adde

    Unconventional magnetism in multivalent charge-ordered YbPtGe2_2 probed by 195^{195}Pt- and 171^{171}Yb-NMR

    Full text link
    Detailed 195^{195}Pt- and 171^{171}Yb nuclear magnetic resonance (NMR) studies on the heterogeneous mixed valence system YbPtGe2_2 are reported. The temperature dependence of the 195^{195}Pt-NMR shift 195K(T)^{195}K(T) indicates the opening of an unusual magnetic gap below 200\,K. 195K(T)^{195}K(T) was analyzed by a thermal activation model which yields an isotropic gap Δ/kB≈200\Delta/k_B \approx 200\,K. In contrast, the spin-lattice relaxation rate 195^{195}(1/T11/T_1) does not provide evidence for the gap. Therefore, an intermediate-valence picture is proposed while a Kondo-insulator scenario can be excluded. Moreover, 195^{195}(1/T11/T_1) follows a simple metallic behavior, similar to the reference compound YPtGe2_2. A well resolved NMR line with small shift is assigned to divalent 171^{171}Yb. This finding supports the proposed model with two sub-sets of Yb species (di- and trivalent) located on the Yb2 and Yb1 site of the YbPtGe2_2 lattice.Comment: Submitted in Physical Review B (Rapid Communication

    Evidence for time-reversal symmetry breaking in superconducting PrPt4Ge12

    Full text link
    Zero and longitudinal field muon spin rotation (muSR) experiments were performed on the superconductors PrPt4Ge12 and LaPt4Ge12. In PrPt4Ge12 below Tc a spontaneous magnetization with a temperature variation resembling that of the superfluid density appears. This observation implies time-reversal symmetry (TRS) breaking in PrPt4Ge12 below Tc = 7.9 K. This remarkably high Tc for an anomalous superconductor and the weak and gradual change of Tc and of the related specific heat anomaly upon La substitution in La_(1-x)Pr_xPt_4Ge_(12) suggests that the TRS breaking is due to orbital degrees of freedom of the Cooper pairs.Comment: To appear in Phys. Rev. B. 5 pages, 3 figure
    • …
    corecore